Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

A multi-scale map of cell structure fusing protein images and interactions

  • 1.

    Harold, F. M. Molecules into cells: specifying spatial architecture. Microbiol. Mol. Biol. Rev. 69, 544–564 (2005).

    CAS  Article  Google Scholar 

  • 2.

    Mori, H. & Cardiff, R. D. Methods of immunohistochemistry and immunofluorescence: converting invisible to visible. In The Tumor Microenvironment, Methods in Molecular Biology Vol. 1458 (eds Ursini-Siegel, J. & Beauchemin, N.) 1–12 (Humana Press, 2016).

  • 3.

    Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Thul, P. J. et al. A subcellular map of the human proteome. Science 356, eaal3321 (2017).

    Article  Google Scholar 

  • 5.

    Huttlin, E. L. et al. Architecture of the human interactome defines protein communities and disease networks. Nature 545, 505–509 (2017).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Schaffer, L. V. & Ideker, T. Mapping the multiscale structure of biological systems. Cell Syst. 12, 622–635 (2021).

    CAS  Article  Google Scholar 

  • 7.

    Ouyang, W. et al. Analysis of the Human Protein Atlas Image Classification competition. Nat. Methods 16, 1254–1261 (2019).

    CAS  Article  Google Scholar 

  • 8.

    Grover, A. & Leskovec, J. node2vec: scalable feature learning for networks. In KDD ’16: Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 855–864 (2016).

  • 9.

    Goodfellow, I., Bengio, Y., Courville, A. & Bengio, Y. Deep Learning Vol. 1 (MIT Press, 2016).

  • 10.

    Fortunato, S. & Hric, D. Community detection in networks: a user guide. Phys. Rep. 659, 1–44 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  • 11.

    Go, C. D. et al. A proximity-dependent biotinylation map of a human cell. Nature 595, 120–124 (2021)

    ADS  CAS  Article  Google Scholar 

  • 12.

    Meyers, R. M. et al. Computational correction of copy number effect improves specificity of CRISPR–Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784 (2017).

    CAS  Article  Google Scholar 

  • 13.

    Deckert, J. et al. Protein composition and electron microscopy structure of affinity-purified human spliceosomal B complexes isolated under physiological conditions. Mol. Cell. Biol. 26, 5528–5543 (2006).

    CAS  Article  Google Scholar 

  • 14.

    Charenton, C., Wilkinson, M. E. & Nagai, K. Mechanism of 5′ splice site transfer for human spliceosome activation. Science 364, 362–367 (2019).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Yoshikatsu, Y. et al. NVL2, a nucleolar AAA-ATPase, is associated with the nuclear exosome and is involved in pre-rRNA processing. Biochem. Biophys. Res. Commun. 464, 780–786 (2015).

    CAS  Article  Google Scholar 

  • 16.

    Chaudhuri, S. et al. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. RNA 13, 2224–2237 (2007).

    CAS  Article  Google Scholar 

  • 17.

    Tafforeau, L. et al. The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of pre-rRNA processing factors. Mol. Cell 51, 539–551 (2013).

    CAS  Article  Google Scholar 

  • 18.

    Eppens, N. A. et al. Deletions in the S1 domain of Rrp5p cause processing at a novel site in ITS1 of yeast pre-rRNA that depends on Rex4p. Nucleic Acids Res. 30, 4222–4231 (2002).

    CAS  Article  Google Scholar 

  • 19.

    De Silva, D., Tu, Y.-T., Amunts, A., Fontanesi, F. & Barrientos, A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 14, 2226–2250 (2015).

    Article  Google Scholar 

  • 20.

    Blencowe, B. J. et al. The SRm160/300 splicing coactivator subunits. RNA 6, 111–120 (2000).

    CAS  Article  Google Scholar 

  • 21.

    The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

    Article  Google Scholar 

  • 22.

    Pavan Kumar, P. et al. Phosphorylation of SATB1, a global gene regulator, acts as a molecular switch regulating its transcriptional activity in vivo. Mol. Cell 22, 231–243 (2006).

    CAS  Article  Google Scholar 

  • 23.

    Pomeranz Krummel, D. A., Oubridge, C., Leung, A. K. W., Li, J. & Nagai, K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 458, 475–480 (2009).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Fleckner, J., Zhang, M., Valcárcel, J. & Green, M. R. U2AF65 recruits a novel human DEAD box protein required for the U2 snRNP-branchpoint interaction. Genes Dev. 11, 1864–1872 (1997).

    CAS  Article  Google Scholar 

  • 25.

    Van Nostrand, E. L. et al. A large-scale binding and functional map of human RNA-binding proteins. Nature 583, 711–719 (2020).

    ADS  Article  Google Scholar 

  • 26.

    Van Nostrand, E. L. et al. Robust, cost-effective profiling of RNA binding protein targets with single-end enhanced crosslinking and immunoprecipitation (seCLIP). In mRNA Processing, Methods in Molecular Biology Vol. 1648 (ed. Shi, Y.) 177–200 (Humana Press, 2017).

  • 27.

    Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819–846 (1978).

    CAS  Article  Google Scholar 

  • 28.

    Wang, T. et al. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic Ras. Cell 168, 890–903 (2017).

    CAS  Article  Google Scholar 

  • 29.

    Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040 (2021).

    CAS  Article  Google Scholar 

  • 30.

    Williams, S. G. & Hall, K. B. Human U2B″ protein binding to snRNA stemloops. Biophys. Chem. 159, 82–89 (2011).

    CAS  Article  Google Scholar 

  • 31.

    Huang, G., Liu, Z., van der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. Preprint at https://arxiv.org/abs/1608.06993 (2016).

  • 32.

    Nusinow, D. P. et al. Quantitative proteomics of the Cancer Cell Line Encyclopedia. Cell 180, 387–402 (2020).

    CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *