Alternative photosynthesis pathways drive the algal CO2-concentrating mechanism

  • Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Mackey, K. R., Morris, J. J., Morel, F. M. & Kranz, S. A. Response of photosynthesis to ocean acidification. Oceanography 28, 74–91 (2015).

    Article  Google Scholar 

  • Mackinder, L. C. M. et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism. Cell 171, 133–147.e114 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mackinder, L. C. M. The Chlamydomonas CO2-concentrating mechanism and its potential for engineering photosynthesis in plants. New Phytol. 217, 54–61 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Raven, J. A. Inorganic carbon acquisition by eukaryotic algae: four current questions. Photosynth. Res. 106, 123–134 (2010).

    CAS  PubMed  Article  Google Scholar 

  • Raven, J. A., Beardall, J. & Giordano, M. Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth. Res. 121, 111–124 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Maberly, S. C. & Gontero, B. Ecological imperatives for aquatic CO2-concentrating mechanisms. J. Exp. Bot. 68, 3797–3814 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Savir, Y., Noor, E., Milo, R. & Tlusty, T. Cross-species analysis traces adaptation of Rubisco toward optimality in a low-dimensional landscape. Proc. Natl Acad. Sci. USA 107, 3475–3480 (2010).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Reinfelder, J. R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annu. Rev. Mar. Sci. 3, 291–315 (2011).

    ADS  Article  Google Scholar 

  • Moroney, J. V. et al. The carbonic anhydrase isoforms of Chlamydomonas reinhardtii: intracellular location, expression, and physiological roles. Photosynth. Res. 109, 133–149 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Duanmu, D., Miller, A. R., Horken, K. M., Weeks, D. P. & Spalding, M. H. Knockdown of limiting-CO2-induced gene HLA3 decreases HCO3 transport and photosynthetic Ci affinity in Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 106, 5990–5995 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wang, Y. & Spalding, M. H. Acclimation to very low CO2: contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic carbon uptake in Chlamydomonas reinhardtii. Plant Physiol. 166, 2040–2050 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Yamano, T., Sato, E., Iguchi, H., Fukuda, Y. & Fukuzawa, H. Characterization of cooperative bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 112, 7315–7320 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mukherjee, A. et al. Thylakoid localized bestrophin-like proteins are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl Acad. Sci. USA 116, 16915–16920 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Karlsson, J. et al. A novel α-type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 17, 1208–1216 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Raven, J. A. CO2-concentrating mechanisms: a direct role for thylakoid lumen acidification? Plant Cell Environ. 20, 147–154 (1997).

    CAS  Article  Google Scholar 

  • Badger, M. R., Kaplan, A. & Berry, J. A. Internal inorganic carbon pool of Chlamydomonas reinhardtii. Plant Physiol. 66, 407–413 (1980).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Allen, J. F. Photosynthesis of ATP—electrons, proton pumps, rotors, and poise. Cell 110, 273–276 (2002).

    CAS  PubMed  Article  Google Scholar 

  • Allen, J. F. Cyclic, pseudocyclic and noncyclic photophosphorylation: new links in the chain. Trends Plant Sci. 8, 15–19 (2003).

    CAS  PubMed  Article  Google Scholar 

  • Munekage, Y. et al. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110, 361–371 (2002).

    CAS  PubMed  Article  Google Scholar 

  • Johnson, X. et al. Proton gradient regulation 5-mediated cyclic electron flow under ATP- or redox-limited conditions: a study of ΔATPase pgr5 and ΔrbcL pgr5 mutants in the green alga Chlamydomonas reinhardtii. Plant Physiol. 165, 438–452 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • DalCorso, G. et al. A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis. Cell 132, 273–285 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Tolleter, D. et al. Control of hydrogen photoproduction by the proton gradient generated by cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 23, 2619–2630 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Curien, G. et al. The water to water cycles in microalgae. Plant Cell Physiol. 57, 1354–1363 (2016).

    CAS  PubMed  Google Scholar 

  • Helman, Y. et al. Genes encoding a-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr. Biol. 13, 230–235 (2003).

    CAS  PubMed  Article  Google Scholar 

  • Gerotto, C. et al. Flavodiiron proteins act as safety valve for electrons in Physcomitrella patens. Proc. Natl Acad. Sci. USA 113, 12322–12327 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Shimakawa, G. et al. The Liverwort, Marchantia, drives alternative electron flow using a flavodiiron protein to protect PSI. Plant Physiol. 173, 1636–1647 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chaux, F. et al. Flavodiiron proteins promote fast and transient O2 photoreduction in Chlamydomonas. Plant Physiol. 174, 1825–1836 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dang, K. V. et al. Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. Plant Cell 26, 3036–3050 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bailleul, B. et al. Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524, 366 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Wang, Y., Stessman, D. J. & Spalding, M. H. The CO2 concentrating mechanism and photosynthetic carbon assimilation in limiting CO2: how Chlamydomonas works against the gradient. Plant J. 82, 429–448 (2015).

    PubMed  Article  CAS  Google Scholar 

  • Kono, A. & Spalding, M. H. LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions in active CO2 uptake under low CO2. Plant J. 102, 1127–1141 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Bonente, G. et al. Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii. PLoS Biol. 9, e1000577 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tian, L. et al. pH dependence, kinetics and light-harvesting regulation of nonphotochemical quenching in Chlamydomonas. Proc. Natl Acad. Sci. USA 116, 8320–8325 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sültemeyer, D. F., Klug, K. & Fock, H. P. Effect of dissolved inorganic carbon on oxygen evolution and uptake by Chlamydomonas reinhardtii suspensions adapted to ambient and CO2-enriched air. Photosynth. Res. 12, 25–33 (1987).

    PubMed  Article  Google Scholar 

  • Sültemeyer, D., Biehler, K. & Fock, H. P. Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189, 235–242 (1993).

    Article  Google Scholar 

  • Lucker, B. & Kramer, D. M. Regulation of cyclic electron flow in Chlamydomonas reinhardtii under fluctuating carbon availability. Photosynthesis Res. 117, 449–459 (2013).

    CAS  Article  Google Scholar 

  • Qu, Z. & Hartzell, H. C. Bestrophin Cl channels are highly permeable to HCO3. Am. J. Physiol. Cell Physiol. 294, C1371–C1377 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Rost, B., Riebesell, U., Burkhardt, S. & Sültemeyer, D. Carbon acquisition of bloom-forming marine phytoplankton. Limnol. Oceanogr. 48, 55–67 (2003).

    ADS  Article  Google Scholar 

  • Basu, S. & Mackey, K. R. M. Phytoplankton as key mediators of the biological carbon pump: their responses to a changing climate. Sustainability 10, 869 (2018).

    Article  CAS  Google Scholar 

  • Atkinson, N. et al. Introducing an algal carbon-concentrating mechanism into higher plants: location and incorporation of key components. Plant Biotechnol. J. 14, 1302–1315 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Meyer, M. T., McCormick, A. J. & Griffiths, H. Will an algal CO2-concentrating mechanism work in higher plants? Curr. Opin. Plant Biol. 31, 181–188 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Nölke, G. et al. The integration of algal carbon concentration mechanism components into tobacco chloroplasts increases photosynthetic efficiency and biomass. Biotechnol. J. 14, 1800170 (2019).

    Article  CAS  Google Scholar 

  • Hennacy, J. H. & Jonikas, M. C. Prospects for engineering biophysical CO2 concentrating mechanisms into land plants to enhance yields. Annu. Rev. Plant Biol. 71, 461–485 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yamamoto, H., Takahashi, S., Badger, M. R. & Shikanai, T. Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis. Nat. Plants 2, 16012 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Wada, S. et al. Flavodiiron protein substitutes for cyclic electron flow without competing CO2 assimilation. Plant Physiol. 176, 1509–1518 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Gómez, R. et al. Faster photosynthetic induction in tobacco by expressing cyanobacterial flavodiiron proteins in chloroplasts. Photosynth. Res. 136, 129–138 (2018).

    PubMed  Article  CAS  Google Scholar 

  • Vicino, P. et al. Expression of flavodiiron proteins Flv2–Flv4 in chloroplasts of Arabidopsis and tobacco plants provides multiple stress tolerance. Int. J. Mol. Sci. 22, 1178 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Burlacot, A., Burlacot, F., Li-Beisson, Y. & Peltier, G. Membrane inlet mass spectrometry: a powerful tool for algal research. Front. Plant. Sci. 11, 1302 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • Burlacot, A. et al. Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis. Plant Physiol. 177, 1639–1649 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Burlacot, A., Richaud, P., Gosset, A., Li-Beisson, Y. & Peltier, G. Algal photosynthesis converts nitric oxide into nitrous oxide. Proc. Natl Acad. Sci. USA 117, 2704–2709 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Desplats, C. et al. Characterization of Nda2, a plastoquinone-reducing type II NAD(P)H dehydrogenase in Chlamydomonas chloroplasts. J. Biol. Chem. 284, 4148–4157 (2009).

    CAS  PubMed  Article  Google Scholar 

  • Yamano, T. et al. Light and low-CO2-dependent LCIB–LCIC complex localization in the chloroplast supports the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 51, 1453–1468 (2010).

    CAS  PubMed  Article  Google Scholar 

  • Moroney, J. V. et al. Isolation and characterization of a mutant of Chlamydomonas reinhardtii deficient in the CO2 concentrating mechanism. Plant Physiol. 89, 897–903 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gerster, R. An attempt to interpret the kinetics of isotope exchange between C18O2 and the water of a leaf: experiments in the dark. Planta 97, 155–172 (1971).

    CAS  PubMed  Article  Google Scholar 

  • Silverman, D. N. In Methods in Enzymology Vol. 87 (ed. Purich, D. L.) 732–752 (Academic Press, 1982).

  • Cruz, J. A., Sacksteder, C. A., Kanazawa, A. & Kramer, D. M. Contribution of electric field (Δψ) to steady-state transthylakoid proton motive force (pmf) in vitro and in vivo. control of pmf parsing into Δψ and ΔpH by ionic strength. Biochem. 40, 1226–1237 (2001).

    CAS  Article  Google Scholar 

  • Douchi, D. et al. Membrane-inlet mass spectrometry enables a quantitative understanding of inorganic carbon uptake flux and carbon concentrating mechanisms in metabolically engineered cyanobacteria. Front. Microbiol. 10, 1356–1356 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • Kramer, D. M. & Evans, J. R. The importance of energy balance in improving photosynthetic productivity. Plant Physiol. 155, 70–78 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: