Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Atomic-resolution protein structure determination by cryo-EM

  • 1.

    Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    ADS  Article  Google Scholar 

  • 2.

    Lüdtke, S. et al. Sub-ångström-resolution crystallography reveals physical distortions that enhance reactivity of a covalent enzymatic intermediate. Nat. Chem. 5, 762–767 (2013).

    Article  Google Scholar 

  • 3.

    Kato, T. et al. The 1.54 Å resolution structure of apoferritin by CRYOARM300 with Cold-FEG. Microsc. Microanal. 25, 998–999 (2019).

    Article  Google Scholar 

  • 4.

    Hamaguchi, T. et al. A new cryo-EM system for single particle analysis. J. Struct. Biol. 207, 40–48 (2019).

    CAS  Article  Google Scholar 

  • 5.

    Tiemeijer, P. C., Bischoff, M., Freitag, B. & Kisielowski, C. Using a monochromator to improve the resolution in TEM to below 0.5Å. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy 114, 72–81 (2012).

    CAS  Article  Google Scholar 

  • 6.

    Müller, H. et al. Aplanatic imaging systems for the transmission electron microscope. Nucl. Instrum. Meth. A 645, 20–27 (2011).

    ADS  Article  Google Scholar 

  • 7.

    Stark, H. & Chari, A. Sample preparation of biological macromolecular assemblies for the determination of high-resolution structures by cryo-electron microscopy. Microscopy (Oxf.) 65, 23–34 (2016).

    CAS  Article  Google Scholar 

  • 8.

    Karuppasamy, M., Karimi Nejadasl, F., Vulovic, M., Koster, A. J. & Ravelli, R. B. Radiation damage in single-particle cryo-electron microscopy: effects of dose and dose rate. J. Synchrotron Radiat. 18, 398–412 (2011).

    CAS  Article  Google Scholar 

  • 9.

    Frank, J. Generalized single-particle cryo-EM-a historical perspective. Microscopy (Oxf.) 65, 3–8 (2016).

    Article  Google Scholar 

  • 10.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  Article  Google Scholar 

  • 11.

    Bracewell, B. L. & Veigele, W. J. in Advances in X-Ray Analysis Vol. 15 (eds Heinrich, K. F. J. et al.) 352–364 (Springer US, 1972).

  • 12.

    Williams, J. F. Electron scattering from atomic hydrogen. III. Absolute differential cross sections for elastic scattering of electrons of energies from 20 to 680 eV. J. Phys. B 8, 2191–2199 (1975).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Carter, C., March, N. H. & Vincent, D. X-ray and electron scattering by molecular hydrogen. Proc. Phys. Soc. 71, 2–16 (1958).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Harauz, G. & van Heel, M. Exact filters for general geometry three dimensional reconstruction. Optik (Stuttg.) 73, 146–156 (1986).

    Google Scholar 

  • 15.

    Grigorieff, N. Resolution measurement in structures derived from single particles. Acta Crystallogr. D 56, 1270–1277 (2000).

    CAS  Article  Google Scholar 

  • 16.

    Heinrich, D., Diederichsen, U. & Rudolph, M. G. Lys314 is a nucleophile in non-classical reactions of orotidine-5′-monophosphate decarboxylase. Chemistry 15, 6619–6625 (2009).

    CAS  Article  Google Scholar 

  • 17.

    Homans, S. W. Water, water everywhere—except where it matters? Drug Discov. Today 12, 534–539 (2007).

    CAS  Article  Google Scholar 

  • 18.

    Schiebel, J. et al. Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nat. Commun. 9, 3559 (2018).

    ADS  Article  Google Scholar 

  • 19.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    Article  Google Scholar 

  • 20.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS  Article  Google Scholar 

  • 21.

    Bromberg, R., Guo, Y., Borek, D. & Otwinowski, Z. High-resolution cryo-EM reconstructions in the presence of substantial aberrations. IUCrJ 7, 445–452 (2020). 

  • 22.

    Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Wu, M., Lander, G. C. & Herzik, M. A., Jr. Sub-2 Angstrom resolution structure determination using single-particle cryo-EM at 200 keV. J. Struct. Biol. X 4, 100020 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 24.

    Russo, C. J. & Henderson, R. Ewald sphere correction using a single side-band image processing algorithm. Ultramicroscopy 187, 26–33 (2018).

    CAS  Article  Google Scholar 

  • 25.

    Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).

    CAS  Article  Google Scholar 

  • 26.

    Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    CAS  Article  Google Scholar 

  • 27.

    Singh, K. et al. Discovery of a regulatory subunit of the yeast fatty acid synthase. Cell 180, 1130–1143.e1120 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *