Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors

  • 1.

    Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    ADS  Google Scholar 

  • 2.

    Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    ADS  CAS  Google Scholar 

  • 3.

    Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  CAS  Google Scholar 

  • 4.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    ADS  CAS  Google Scholar 

  • 5.

    Wang, J. & Zhang, S. C. Topological states of condensed matter. Nat. Mater. 16, 1062–1067 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 6.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  • 7.

    Manna, K., Sun, Y., Muechler, L., Kübler, J. & Felser, C. Heusler, Weyl and Berry. Nat. Rev. Mater. 3, 244–256 (2018).

    ADS  CAS  Google Scholar 

  • 8.

    Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).

    ADS  CAS  Google Scholar 

  • 9.

    Kumar, N., Guin, S. N., Manna, K., Shekhar, C. & Felser, C. Topological quantum materials from the viewpoint of chemistry. Chem. Rev. 121, 2780–2815 (2021).

    CAS  PubMed  Google Scholar 

  • 10.

    Narang, P., Garcia, C. A. & Felser, C. The topology of electronic band structures. Nat. Mater. 20, 293–300 (2021).

    ADS  CAS  PubMed  Google Scholar 

  • 11.

    Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Okamura, Y. et al. Giant magneto-optical responses in magnetic Weyl semimetal Co3Sn2S2. Nat. Commun. 11, 4619 (2020).

  • 13.

    Ding, L. et al. Intrinsic anomalous Nernst effect amplified by disorder in a half-metallic semimetal. Phys. Rev. X 91, 041061 (2019).

    Google Scholar 

  • 14.

    Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    CAS  Google Scholar 

  • 15.

    Xu, L. et al. Anomalous transverse response of Co2MnGa and universality of the room-temperature \({\alpha }_{ij}^{A}/{\sigma }_{ij}^{A}\) ratio across topological magnets. Phys. Rev. B 101, 180404 (2020).

    ADS  CAS  Google Scholar 

  • 16.

    Li, P. et al. Giant room temperature anomalous Hall effect and tunable topology in a ferromagnetic topological semimetal Co2MnAl. Nat. Commun. 11, 3476 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 18.

    Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Suzuki, T. et al. Singular angular magnetoresistance in a magnetic nodal semimetal. Science 365, 377–381 (2019).

    ADS  CAS  PubMed  Google Scholar 

  • 20.

    Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 21.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  PubMed  Google Scholar 

  • 22.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Google Scholar 

  • 23.

    Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314 (2017).

    ADS  CAS  PubMed  Google Scholar 

  • 24.

    Yasuda, K. et al. Large non-reciprocal charge transport mediated by quantum anomalous Hall edge states. Nat. Nanotechnol. 15, 831–835 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 25.

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

    ADS  CAS  PubMed  Google Scholar 

  • 26.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  CAS  PubMed  Google Scholar 

  • 27.

    Rimet, R., Schlenker, C. & Vincent, H. A new semiconducting ferrimagnet: a silicon manganese telluride. J. Magn. Magn. Mater. 25, 7–10 (1981).

    ADS  CAS  Google Scholar 

  • 28.

    Vincent, H., Leroux, D., Bijaoui, D., Rimet, R. & Schlenker, C. Crystal structure of Mn3Si2Te6. J. Solid State Chem. 63, 349–352 (1986).

    ADS  CAS  Google Scholar 

  • 29.

    May, A. F. et al. Magnetic order and interactions in ferrimagnetic Mn3Si2Te6. Phys. Rev. B 95, 174440 (2017).

    ADS  Google Scholar 

  • 30.

    Kanamori, J. & Terakura, K. A general mechanism underlying ferromagnetism in transition metal compounds. J. Phys. Soc. Jpn 70, 1433–1434 (2001).

    ADS  CAS  Google Scholar 

  • 31.

    Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    ADS  CAS  Google Scholar 

  • 32.

    Yu, P. Y. & Cardona, M. Fundamentals of Semiconductors (Springer, 2005).

  • 33.

    Sharma, S. K., Sagar, P., Gupta, H., Kumar, R. & Mehra, R. M. Meyer–Neldel rule in Se and S-doped hydrogenated amorphous silicon. Solid State Electron. 51, 1124–1128 (2007).

    ADS  CAS  Google Scholar 

  • 34.

    Durá, O. J. et al. Transport, electronic, and structural properties of nanocrystalline CuAlO2 delafossites. Phys. Rev. B 83, 045202 (2011).

    ADS  Google Scholar 

  • 35.

    Hauser, A. J. et al. Electronic and magnetic tunability of Sr2CrReO6 films by growth-mediated oxygen modulation. Appl. Phys. Lett. 102, 032403 (2013).

    ADS  Google Scholar 

  • 36.

    Kokado, S., Tsunoda, M., Harigaya, K. & Sakuma, A. Anisotropic magnetoresistance effects in Fe, Co, Ni, Fe4N, and half-metallic ferromagnet: a systematic analysis. J. Phys. Soc. Jpn 81, 024705 (2012).

    ADS  Google Scholar 

  • 37.

    Wang, H. et al. Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4. Nat. Commun. 10, 2280 (2019).

  • 38.

    Endo, T., Kubota, H. & Miyazaki, T. Magnetoresistance of Co2MnAl1-xSix Heusler alloys. J. Magn. Soc. Jpn 23, 1129–1132 (1999).

    CAS  Google Scholar 

  • 39.

    Eckstein, J. N., Bozovic, I., O’Donnell, J., Onellion, M. & Rzchowski, M. S. Anisotropic magnetoresistance in tetragonal La1-xCaxMnO3 thin films. Appl. Phys. Lett. 69, 1312 (1996).

    ADS  CAS  Google Scholar 

  • 40.

    Li, R.-W. et al. Anomalously large anisotropic magnetoresistance in a perovskite manganite. Proc. Natl Acad. Sci. USA 106, 14224–14229 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Wang, Z.-C. et al. Colossal magnetoresistance without mixed valence in a layered phosphide crystal. Adv. Mater. 33, 2005755 (2021).

    CAS  Google Scholar 

  • 42.

    Soh, J.-R. et al. Magnetic and electronic structure of Dirac semimetal candidate EuMnSb2. Phys. Rev. B 100, 174406 (2019).

    ADS  CAS  Google Scholar 

  • 43.

    Yin, J. et al. Large negative magnetoresistance in the antiferromagnetic rare-earth dichalcogenide EuTe2. Phys. Rev. Mater. 4, 013405 (2020).

    ADS  CAS  Google Scholar 

  • 44.

    Yang, H. et al. Observation of an unusual colossal anisotropic magnetoresistance effect in an antiferromagnetic semiconductor. Preprint at https://arxiv.org/abs/2103.02818 (2021).

  • 45.

    Ni, Y. et al. Colossal magnetoresistance via avoiding fully polarized magnetization in the ferrimagnetic insulator Mn3Si2Te6. Phys. Rev. B 103, L161105 (2021).

    ADS  CAS  Google Scholar 

  • 46.

    Manyala, N. et al. Magnetoresistance from quantum interference effects in ferromagnets. Nature 404, 581–584 (2000).

    ADS  CAS  PubMed  Google Scholar 

  • 47.

    Tsujii, N., Nishide, A., Hayakawa, J. & Mori, T. Observation of enhanced thermopower due to spin fluctuation in weak itinerant ferromagnet. Sci. Adv. 5, eaat5935 (2019).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 48.

    Lu, C. et al. Crossover of conduction mechanism in Sr2IrO4 epitaxial thin films. Appl. Phys. Lett. 105, 082407 (2014).

    ADS  Google Scholar 

  • 49.

    Yildiz, A., Serin, N., Serin, T. & Kasap, M. Crossover from nearest-neighbor hopping conduction to Efros–Shklovskii variable-range hopping conduction in hydrogenated amorphous silicon films. Jpn. J. Appl. Phys. 48, 111203 (2009).

    ADS  Google Scholar 

  • 50.

    Li, Z. et al. Transition between Efros–Shklovskii and Mott variable-range hopping conduction in polycrystalline ermanium thin films. Semicond. Sci. Technol. 32, 035010 (2017).

    ADS  Google Scholar 

  • 51.

    Koepernik, K. & Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 59, 1743–1757 (1999).

    ADS  CAS  Google Scholar 

  • 52.

    Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    PubMed  Google Scholar 

  • 53.

    Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    ADS  CAS  MATH  Google Scholar 

  • 54.

    Tsirkin, S. S. High performance Wannier interpolation of Berry curvature and related quantities with WannierBerri code. npj Comput. Mater. 7, 33 (2021).

    ADS  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top