Early Solar System instability triggered by dispersal of the gaseous disk

  • Tsiganis, K., Gomes, R., Morbidelli, A. & Levison, H. F. Origin of the orbital architecture of the giant planets of the Solar System. Nature 435, 459–461 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Morbidelli, A., Tsiganis, K., Crida, A., Levison, H. F. & Gomes, R. Dynamics of the giant planets of the Solar System in the gaseous protoplanetary disk and their relationship to the current orbital architecture. Astron. J. 134, 1790–1798 (2007).

    ADS  Article  Google Scholar 

  • Batygin, K., Brown, M. E. & Betts, H. Instability-driven dynamical evolution model of a primordially five-planet outer Solar System. Astrophys. J. Lett. 744, L3 (2012).

    ADS  Article  Google Scholar 

  • Nesvorný, D. Dynamical evolution of the early Solar System. Ann. Rev. Astron. Astrophys. 56, 137–174 (2018).

    ADS  Article  Google Scholar 

  • Levison, H. F., Morbidelli, A., Tsiganis, K., Nesvorný, D. & Gomes, R. Late orbital instabilities in the outer planets induced by interaction with a self-gravitating planetesimal disk. Astron. J. 142, 152 (2011).

    ADS  Article  Google Scholar 

  • Nesvorný, D., Vokrouhlický, D., Bottke, W. F. & Levison, H. F. Evidence for very early migration of the Solar System planets from the Patroclus–Menoetius binary Jupiter Trojan. Nat. Astron. 2, 878–882 (2018).

    ADS  Article  Google Scholar 

  • Mojzsis, S. J., Brasser, R., Kelly, N. M., Abramov, O. & Werner, S. C. Onset of giant planet migration before 4480 million years ago. Astrophys. J. 881, 44 (2019).

    ADS  CAS  Article  Google Scholar 

  • Quarles, B. & Kaib, N. Instabilities in the early Solar System due to a self-gravitating disk. Astron. J. 157, 67 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • de Sousa, R. R. et al. Dynamical evidence for an early giant planet instability. Icarus 339, 113605 (2020).

    Article  Google Scholar 

  • Pierens, A., Raymond, S. N., Nesvorny, D. & Morbidelli, A. Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the Grand Tack and Nice models. Astrophys. J. Lett. 795, L11 (2014).

    ADS  Article  Google Scholar 

  • Williams, J. P. & Cieza, L. A. Protoplanetary disks and their evolution. Ann. Rev. Astron. Astrophys. 49, 67–117 (2011).

    ADS  Article  Google Scholar 

  • Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Ann. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    ADS  CAS  Article  Google Scholar 

  • Clement, M. S., Kaib, N. A., Raymond, S. N. & Walsh, K. J. Mars’ growth stunted by an early giant planet instability. Icarus 311, 340–356 (2018).

    ADS  Article  Google Scholar 

  • Alexander, R., Pascucci, I., Andrews, S., Armitage, P. & Cieza, L. in Protostars and Planets Vol. VI (eds. Beuther, H. et al.) 475–496 (Univ. Arizona Press, 2014).

  • Ercolano, B. & Pascucci, I. The dispersal of planet-forming discs: theory confronts observations. R. Soc. Open Sci. 4, 170114 (2017).

    ADS  MathSciNet  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Masset, F. S., Morbidelli, A., Crida, A. & Ferreira, J. Disk surface density transitions as protoplanet traps. Astrophys. J. 642, 478–487 (2006).

    ADS  Article  Google Scholar 

  • Romanova, M. M. et al. 3D simulations of planet trapping at disc-cavity boundaries. Mon. Not. R. Astron. Soc. 485, 2666–2680 (2019).

    ADS  CAS  Article  Google Scholar 

  • Liu, B., Ormel, C. W. & Lin, D. N. C. Dynamical rearrangement of super-Earths during disk dispersal. I. Outline of the magnetospheric rebound model. Astron. Astrophys. 601, A15 (2017).

    ADS  Article  Google Scholar 

  • Liu, B. & Ormel, C. W. Dynamical rearrangement of super-Earths during disk dispersal. II. Assessment of the magnetospheric rebound model for planet formation scenarios. Astron. Astrophys. 606, A66 (2017).

    ADS  Article  Google Scholar 

  • Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Nesvorný, D. & Morbidelli, A. Statistical study of the early Solar System’s instability with four, five, and six giant planets. Astron. J 144, 117 (2012).

    ADS  Article  Google Scholar 

  • Clement, M. et al. Born eccentric: constraints on Jupiter and Saturn’s pre-instability orbits. Icarus 355, 114–122 (2021).

    Article  Google Scholar 

  • Zellner, N. E. B. Cataclysm no more: new views on the timing and delivery of lunar impactors. Origins Life Evol. Biosphere 47, 261–280 (2017).

    ADS  CAS  Article  Google Scholar 

  • Zahnle, K., Schenk, P., Levison, H. & Dones, L. Cratering rates in the outer Solar System. Icarus 163, 263–289 (2003).

    ADS  Article  Google Scholar 

  • Singer, K. N. et al. Impact craters on Pluto and Charon indicate a deficit of small Kuiper belt objects. Science 363, 955–959 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Raymond, S. N., Izidoro, A. & Morbidelli, A. In Planetary Astrobiology (eds Meadows, V. et al.), 287–324 (Univ. Arizona Press, 2020).

  • Raymond, S. N., Armitage, P. J. & Gorelick, N. Planet-planet scattering in planetesimal disks. II. Predictions for outer extrasolar planetary systems. Astrophys. J. 711, 772–795 (2010).

    ADS  Article  Google Scholar 

  • Suzuki, D. et al. The exoplanet mass-ratio function from the MOA-II Survey: discovery of a break and likely peak at a Neptune mass. Astrophys. J. 833, 145 (2016).

    ADS  Article  CAS  Google Scholar 

  • Pu, B. & Wu, Y. Spacing of Kepler planets: sculpting by dynamical instability. Astrophys. J. 807, 44 (2017).

    ADS  Google Scholar 

  • Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 500, 33–51 (1973).

    ADS  Google Scholar 

  • Alexander, R. D., Clarke, C. J. & Pringle, J. E. Photoevaporation of protoplanetary discs – I. Hydrodynamic models. Mon. Not. R. Astron. Soc. 369, 216–228 (2006).

    ADS  Article  Google Scholar 

  • Owen, J. E., Ercolano, B. & Clarke, C. J. Protoplanetary disc evolution and dispersal: the implications of X-ray photoevaporation. Mon. Not. R. Astron. Soc. 412, 13–25 (2011).

    ADS  Article  Google Scholar 

  • Haisch, J., Karl, E., Lada, E. A. & Lada, C. J. Disk frequencies and lifetimes in young clusters. Astrophys. J. Lett. 553, L153–L156 (2001).

    ADS  CAS  Article  Google Scholar 

  • Luhman, K. L., Espaillat, C., Hartmann, L. & Calvet, N. The disk population of the Taurus star-forming region. Astrophys. J. Suppl. 186, 111–174 (2010).

    ADS  CAS  Article  Google Scholar 

  • Koepferl, C. M. et al. Disc clearing of young stellar objects: evidence for fast inside-out dispersal. Mon. Not. R. Astron. Soc. 428, 3327–3354 (2013).

    ADS  Article  Google Scholar 

  • Hayashi, C. Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Prog. Theor. Phys. Suppl. 70, 35–53 (1981).

    ADS  Article  Google Scholar 

  • Paardekooper, S. J., Baruteau, C., Crida, A. & Kley, W. A torque formula for non-isothermal type I planetary migration – I. Unsaturated horseshoe drag. Mon. Not. R. Astron. Soc. 401, 1950–1964 (2010).

    ADS  Article  Google Scholar 

  • Liu, B., Zhang, X., Lin, D. N. C. & Aarseth, S. J. Migration and growth of protoplanetary embryos. II. Emergence of proto-gas-giant cores versus super Earth progenitors. Astrophys. J. 798, 62 (2015).

    ADS  Article  Google Scholar 

  • Lin, D. N. C. & Papaloizou, J. On the tidal interaction between protoplanets and the protoplanetary disk. III. Orbital migration of protoplanets. Astrophys. J. 309, 846 (1986).

    ADS  Article  Google Scholar 

  • Crida, A., Morbidelli, A. & Masset, F. On the width and shape of gaps in protoplanetary disks. Icarus 181, 587–604 (2006).

    ADS  Article  Google Scholar 

  • Fernandez, J. A. & Ip, W.-H. Some dynamical aspects of the accretion of Uranus and Neptune: The exchange of orbital angular momentum with planetesimals. Icarus 58, 109–120 (1984).

    ADS  Article  Google Scholar 

  • Agnor, C. B. & Lin, N. C. On the migration of Jupiter and Saturn: constraints from linear models of secular resonant coupling with the terrestrial planets. Astrophys. J. 745, 143 (2012).

    ADS  Article  CAS  Google Scholar 

  • Kaib, N. A. & Chambers, J. E. The fragility of the terrestrial planets during a giant-planet instability. Mon. Not. R. Astron. Soc. 455, 3561–3569 (2016).

    ADS  Article  Google Scholar 

  • Aarseth, S. J. Gravitational N-Body Simulations (Cambridge Univ. Press, 2003).

  • Chambers, J. A hybrid symplectic integrator that permits close encounters between massive bodies. Mon. Not. R. Astron. Soc. 304, 793–799 (1999).

    ADS  Article  Google Scholar 

  • Laskar, J. Large scale chaos and the spacing of the inner planets. Astron. Astrophys. 317, L75–L78 (1997).

    ADS  Google Scholar 

  • Chambers, J. E. Making more terrestrial planets. Icarus 152, 205–224 (2001).

    ADS  Article  Google Scholar 

  • Morbidelli, A., Brasser, R., Tsiganis, K., Gomes, R. & Levison, H. F. Constructing the secular architecture of the solar system. I. The giant planets. Astron. Astrophys. 507, 1041–1052 (2009).

    ADS  Article  Google Scholar 

  • Liu, B., Lambrechts, M., Johansen, A. & Liu, F. Super-Earth masses sculpted by pebble isolation around stars of different masses. Astron. Astrophys. 631, A7 (2019).

    Article  CAS  Google Scholar 

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: