Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Earthquakes indicated magma viscosity during Kīlauea’s 2018 eruption

  • 1.

    Sides, I. R., Edmonds, M., Maclennan, J., Swanson, D. A. & Houghton, B. F. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition. Nat. Geosci. 7, 464–469 (2014).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367−374 (2019).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Roman, D. C. & Cashman, K. V. The origin of volcano-tectonic earthquake swarms. Geology 34, 457–460 (2006).

    ADS  Article  Google Scholar 

  • 4.

    Karpin, T. L. & Thurber, C. H. The relationship between earthquake swarms and magma transport: Kilauea Volcano, Hawaii. Pure Appl. Geophys. 125, 971–991 (1987).

    ADS  Article  Google Scholar 

  • 5.

    Endo, E. T. Focal Mechanisms for the May 15-18, 1970 Shallow Kilauea Earthquake Swarm. Thesis, San Jose State College (1971).

  • 6.

    Hill, D. P. A model for earthquake swarms. J. Geophys. Res. 82, 1347–1352 (1977).

    ADS  Article  Google Scholar 

  • 7.

    Lin, G. & Okubo, P. G. A large refined catalog of earthquake relocations and focal mechanisms for the Island of Hawai‘i and its seismotectonic implications. J. Geophys. Res. 121, 5031–5048 (2016).

    ADS  Article  Google Scholar 

  • 8.

    Wauthier, C., Roman, D. C. & Poland, M. P. Modulation of seismic activity in Kīlauea’s upper East Rift Zone (Hawai‘i) by summit pressurization. Geology 47, 820–824 (2019).

    ADS  Article  Google Scholar 

  • 9.

    Hildreth, W., Fierstein, J., Champion, D. & Calvert, A. Mammoth Mountain and its mafic periphery—a late Quaternary volcanic field in eastern California. Geosphere 10, 1315–1365 (2014).

    ADS  Article  Google Scholar 

  • 10.

    Fierstein, J., Hildreth, W. & Calvert, A. T. Eruptive history of South Sister, Oregon Cascades. J. Volcanol. Geotherm. Res. 207, 145–179 (2011).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Tarasewicz, J., White, R. S., Woods, A. W., Brandsdóttir, B. & Gudmundsson, M. T. Magma mobilization by downward‐propagating decompression of the Eyjafjallajökull volcanic plumbing system. Geophys. Res. Lett. 39, L19309 (2012).

  • 12.

    Stock, M. et al. Cryptic evolved melts beneath monotonous basaltic shield volcanoes in the Galápagos Archipelago. Nat. Commun. 11, 3767 (2020).

    ADS  Article  Google Scholar 

  • 13.

    Ho, R. A. & Garcia, M. O. Origin of differentiated lavas at Kilauea Volcano, Hawaii: implications from the 1955 eruption. Bull. Volcanol. 50, 35–46 (1988).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Gansecki, C. et al. The tangled tale of Kīlauea’s 2018 eruption as told by geochemical monitoring. Science 366, eaaz0147 (2019).

    CAS  Article  Google Scholar 

  • 15.

    Griffiths, R. W. The dynamics of lava flows. Annu. Rev. Fluid Mech. 32, 477–518 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  • 16.

    Cassidy, M., Manga, M., Cashman, K. V. & Bachmann, O. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 9, 2839 (2018).

    ADS  Article  Google Scholar 

  • 17.

    Macdonald, G. A. & Eaton, J. P. Hawaiian Volcanoes During 1955. USGS Bulletin 1171 https://doi.org/10.3133/b1171 (United States Geological Survey, 1964).

  • 18.

    Roman, D. C. & Gardine, M. D. Seismological evidence for long-term and rapidly accelerating magma pressurization preceding the 2009 eruption of Redoubt Volcano, Alaska. Earth Planet. Sci. Lett. 371/372, 226–234 (2013).

    ADS  Article  Google Scholar 

  • 19.

    Lehto, H. L., Roman, D. C. & Moran, S. C. Temporal changes in stress preceding the 2004–2008 eruption of Mount St. Helens, Washington. J. Volcanol. Geotherm. Res. 198, 129–142 (2010).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Roman, D. C. Numerical models of volcanotectonic earthquake triggering on non‐ideally oriented faults. Geophys. Res. Lett. 32, L02304 (2005).

  • 21.

    Smith, J. V. Shear thickening dilatancy in crystal-rich flows. J. Volcanol. Geotherm. Res. 79, 1–8 (1997).

    ADS  Article  Google Scholar 

  • 22.

    Roman, D. C. & Heron, P. Effect of regional tectonic setting on local fault response to episodes of volcanic activity. Geophys. Res. Lett. 34, L13310 (2007).

  • 23.

    Wright, T. L. & Klein, F. W. Two Hundred Years of Magma Transport and Storage at Kīlauea Volcano, Hawai‘i, 1790–2008. USGS Professional Paper 1806 https://doi.org/10.3133/pp1806 (United States Geological Survey, 2014).

  • 24.

    Johnson, J. H., Swanson, D. A., Roman, D. C., Poland, M. P. & Thelen, W. A. Crustal stress and structure at Kīlauea Volcano inferred from seismic anisotropy. In Hawaiian Volcanoes: From Source to Surface (eds. Carey, R., Cayol, V., Poland, M. & Weis, D.) 251−268 (Wiley, 2015).

  • 25.

    Chen, K. et al. Triggering of the MW 7.2 Hawaii earthquake of 4 May 2018 by a dike intrusion. Geophys. Res. Lett. 46, 2503–2510 (2019).

    ADS  Article  Google Scholar 

  • 26.

    Moore, R. B. Distribution of differentiated tholeiitic basalts on the lower east rift zone of Kilauea Volcano, Hawaii: a possible guide to geothermal exploration. Geology 11, 136–140 (1983).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Lin, G., Shearer, P. M., Matoza, R. S., Okubo, P. G. & Amelung, F. Three-dimensional seismic velocity structure of Mauna Loa and Kilauea volcanoes in Hawaii from local seismic tomography. J. Geophys. Res. 119, 4377–4392 (2014).

    ADS  Article  Google Scholar 

  • 28.

    Teplow, W. et al. Dacite melt at the Puna geothermal venture wellfield, Big Island of Hawaii. Trans. Geotherm. Resour. Council 33, 989–994 (2009).

    CAS  Google Scholar 

  • 29.

    Olivier, G., Brenguier, F., Carey, R., Okubo, P. & Donaldson, C. Decrease in seismic velocity observed prior to the 2018 eruption of Kīlauea Volcano with ambient seismic noise interferometry. Geophys. Res. Lett. 46, 3734–3744 (2019).

    ADS  Article  Google Scholar 

  • 30.

    Patrick, M. R. et al. The cascading origin of the 2018 Kīlauea eruption and implications for future forecasting. Nat. Commun. 11, 5646 (2020).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Wicks, C. W., Thatcher, W., Dzurisin, D. & Svarc, J. Uplift, thermal unrest and magma intrusion at Yellowstone caldera. Nature 440, 72–75 (2006).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Castro, J. M. & Dingwell, D. B. Rapid ascent of rhyolitic magma at Chaiten volcano, Chile. Nature 461, 780–783 (2009).

    ADS  CAS  Article  Google Scholar 

  • 33.

    Hawaiian Volcano Observatory Network https://doi.org/10.7914/SN/HV (USGS Hawaiian Volcano Observatory, International Federation of Digital Seismograph Networks, 1956).

  • 34.

    Wei, X., Shen, Y., Caplan‐Auerbach, J. & Morgan, J. K. An OBS array to investigate offshore seismicity during the 2018 Kīlauea eruption. Seismol. Res. Lett. 92, 603–612 (2021).

    Article  Google Scholar 

  • 35.

    Johnson, J. UEA STAK Project https://doi.org/10.7914/SN/4S_2018 (National Geoscience Data Centre, International Federation of Digital Seismograph Networks, 2018).

  • 36.

    Lienert, B. R. & Havskov, J. A computer program for locating earthquakes both locally and globally. Seismol. Res. Lett. 66, 26–36 (1995).

    Article  Google Scholar 

  • 37.

    Klein, F. W. A linear gradient crustal model for south Hawaii. Bull. Seismol. Soc. Am. 71, 1503–1510 (1981).

    Google Scholar 

  • 38.

    Reasenberg, P. & Oppenheimer, D. FPFIT, FPPLOT and FPPAGE: FORTRAN Computer Programs for Calculating and Displaying Earthquake Fault Plane Solutions. Open-File Report 85-739 https://doi.org/10.3133/ofr85739 (USGS, 1985).

  • 39.

    Lin, J. & Stein, R. S. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike‐slip faults. J. Geophys. Res. 109, B02303 (2004).

  • 40.

    Toda, S., Stein, R. S., Richards‐Dinger, K. & Bozkurt, S. B. Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J. Geophys. Res. 110, B05S16 (2005).

  • 41.

    Giordano, D., Russell, J. K. & Dingwell, D. B. Viscosity of magmatic liquids: a model. Earth Planet. Sci. Lett. 271, 123–134 (2008).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Dingwell, D. B. & Virgo, D. The effect of oxidation state on the viscosity of melts in the system Na2O-FeO-Fe2O3-SiO2. Geochim. Cosmochim. Acta 51, 195–205 (1987).

    ADS  CAS  Article  Google Scholar 

  • 43.

    Mader, H. M., Llewellin, E. W. & Mueller, S. P. The rheology of two-phase magmas: a review and analysis. J. Volcanol. Geotherm. Res. 257, 135–158 (2013).

    ADS  CAS  Article  Google Scholar 

  • 44.

    Phan-Thien, N. & Pham, D. C. Differential multiphase models for polydispersed suspensions and particulate solids. J. Non-Newt. Fluid Mech. 72, 305–318 (1997).

    CAS  Article  Google Scholar 

  • 45.

    Chevrel, M. O. et al. The viscosity of pāhoehoe lava: in situ syn-eruptive measurements from Kilauea, Hawaii. Earth Planet. Sci. Lett. 493, 161–171 (2018).

    ADS  CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *