Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Entangling logical qubits with lattice surgery

  • 1.

    Preskill, J. in Introduction to Quantum Computation (eds Lo, H.-K., Popescu, S. & Spiller, T. P.) Ch. 8, 213–269 (World Scientific, 1997).

  • 2.

    Devitt, S. J., Munro, W. J. & Nemoto, K. Quantum error correction for beginners. Rep. Prog. Phys. 76, 076001 (2013).

    ADS  Google Scholar 

  • 3.

    Terhal, B. M. Quantum error correction for quantum memories. Rev. Mod. Phys. 87, 307–346 (2015).

    ADS  MathSciNet  Google Scholar 

  • 4.

    Campbell, E. T., Terhal, B. M. & Vuillot, C. Roads towards fault-tolerant universal quantum computation. Nature 549, 172–179 (2017); correction 559, E6 (2018).

    ADS  CAS  Google Scholar 

  • 5.

    Gottesmann, D. Stabilizer Codes and Quantum Error Correction. Ph.D. thesis, Caltech (1997).

  • 6.

    Gottesman, D. & Chuang, I. L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402, 390–393 (1999).

    ADS  CAS  Google Scholar 

  • 7.

    Eisert, J., Jacobs, K., Papadopoulos, P. & Plenio, M. B. Optimal local implementation of nonlocal quantum gates. Phys. Rev. A 62, 052317 (2000).

    ADS  Google Scholar 

  • 8.

    Bravyi, S. & Kitaev, A. Universal quantum computation with ideal Clifford gates and noisy ancillas. Phys. Rev. A 71, 022316 (2005).

    ADS  MathSciNet  MATH  Google Scholar 

  • 9.

    Poulsen Nautrup, H., Friis, N. & Briegel, H. J. Fault-tolerant interface between quantum memories and quantum processors. Nat. Commun. 8, 1321 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 10.

    Gutiérrez, M., Müller, M. & Bermúdez, A. Transversality and lattice surgery: exploring realistic routes toward coupled logical qubits with trapped-ion quantum processors. Phys. Rev. A 99, 022330 (2019).

    ADS  Google Scholar 

  • 11.

    Horsman, C., Fowler, A. G., Devitt, S. & Van Meter, R. Surface code quantum computing by lattice surgery. New J. Phys. 14, 123011 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  • 12.

    Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    ADS  CAS  Google Scholar 

  • 13.

    Boulant, N., Viola, L., Fortunato, E. M. & Cory, D. G. Experimental implementation of a concatenated quantum error-correcting code. Phys. Rev. Lett. 94, 130501 (2005).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 14.

    Zhang, J., Gangloff, D., Moussa, O. & Laamme, R. Experimental quantum error correction with high fidelity. Phys. Rev. A 84, 034303 (2011).

    ADS  Google Scholar 

  • 15.

    Wootton, J. R. & Loss, D. Repetition code of 15 qubits. Phys. Rev. A 97, 052313 (2018).

    ADS  CAS  Google Scholar 

  • 16.

    Bell, B. A. et al. Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5, 3658 (2014).

    ADS  CAS  Google Scholar 

  • 17.

    Takita, M., Cross, A. W., Córcoles, A. D., Chow, J. M. & Gambetta, J. M. Experimental demonstration of fault-tolerant state preparation with superconducting qubits. Phys. Rev. Lett. 119, 180501 (2017).

    ADS  Google Scholar 

  • 18.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS  CAS  Google Scholar 

  • 19.

    Linke, N. M. et al. Fault-tolerant quantum error detection. Sci. Adv. 3, e1701074 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS  Google Scholar 

  • 21.

    Aoki, T. et al. Quantum error correction beyond qubits. Nat. Phys. 5, 541–546 (2009).

    CAS  Google Scholar 

  • 22.

    Reed, M. D. et al. Realization of three-qubit quantum error correction with superconducting circuits. Nature 482, 382–385 (2012).

    ADS  CAS  Google Scholar 

  • 23.

    Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    ADS  CAS  Google Scholar 

  • 24.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS  CAS  Google Scholar 

  • 25.

    Stricker, R. et al. Experimental deterministic correction of qubit loss. Nature 585, 207–210 (2020).

    Google Scholar 

  • 26.

    Zhang, J., Laflamme, R. & Suter, D. Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code. Phys. Rev. Lett. 109, 100503 (2012).

    ADS  Google Scholar 

  • 27.

    Nigg, D. et al. Quantum computations on a topologically encoded qubit. Science 345, 302–305 (2014).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  • 28.

    Barends, R. et al. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature 508, 500–503 (2014).

    ADS  CAS  Google Scholar 

  • 29.

    Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Gong, M. et al. Experimental verification of five-qubit quantum error correction with superconducting qubits. Preprint at http://arXiv.org/abs/1907.04507 (2019).

  • 31.

    Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    CAS  Google Scholar 

  • 32.

    Chou, K. S. et al. Deterministic teleportation of a quantum gate between two logical qubits. Nature 561, 368–373 (2018).

    ADS  CAS  Google Scholar 

  • 33.

    Harper, R. & Flammia, S. T. Fault-tolerant logical gates in the IBM quantum experience. Phys. Rev. Lett. 122, 080504 (2019).

    ADS  CAS  Google Scholar 

  • 34.

    Dennis, E., Kitaev, A., Landahl, A. & Preskill, J. Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  • 35.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS  Google Scholar 

  • 36.

    Lekitsch, B. et al. Blueprint for a microwave trapped ion quantum computer. Sci. Adv. 3, e1601540 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 37.

    Jones, N. C. et al. Layered architecture for quantum computing. Phys. Rev. X 2, 031007 (2012).

    Google Scholar 

  • 38.

    Herr, D., Nori, F. & Devitt, S. J. Optimization of lattice surgery is NP-hard. npj Quantum Inf. 3, 35 (2017).

    ADS  Google Scholar 

  • 39.

    Häner, T., Steiger, D. S., Svore, K. & Troyer, M. A software methodology for compiling quantum programs. Quantum Sci. Technol. 3, 020501 (2018).

    ADS  Google Scholar 

  • 40.

    Litinski, D. A game of surface codes: large-scale quantum computing with lattice surgery. Quantum 3, 128 (2019).

    Google Scholar 

  • 41.

    Nautrup, H. P., Delfosse, N., Dunjko, V., Briegel, H. J. & Friis, N. Optimizing quantum error correction codes with reinforcement learning. Quantum 3, 215 (2019).

    Google Scholar 

  • 42.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

    ADS  CAS  Google Scholar 

  • 43.

    Lanyon, B. P. et al. Measurement-based quantum computation with trapped ions. Phys. Rev. Lett. 111, 210501 (2013).

    ADS  CAS  Google Scholar 

  • 44.

    Wang, D. S., Fowler, A. G. & Hollenberg, L. C. L. Surface code quantum computing with error rates over 1%. Phys. Rev. A 83, 020302(R) (2011).

    ADS  Google Scholar 

  • 45.

    Schindler, P. et al. A quantum information processor with trapped ions. New J. Phys. 15, 123012 (2013).

    ADS  Google Scholar 

  • 46.

    Ejtemaee, S. & Haljan, P. C. 3D Sisyphus cooling of trapped ions. Phys. Rev. Lett. 119, 043001 (2017).

    ADS  CAS  Google Scholar 

  • 47.

    Friis, N. et al. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X 8, 021012 (2018).

    CAS  Google Scholar 

  • 48.

    Erhard, A. et al. Characterizing large-scale quantum computers via cycle benchmarking. Nat. Commun. 10, 5347 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  • 49.

    Friis, N., Vitagliano, G., Malik, M. & Huber, M. Entanglement certification from theory to experiment. Nat. Rev. Phys. 1, 72–87 (2019).

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top