Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Envelope protein ubiquitination drives entry and pathogenesis of Zika virus

  • 1.

    Musso, D. et al. Potential sexual transmission of Zika virus. Emerg. Infect. Dis. 21, 359–361 (2015).

    CAS  Article  Google Scholar 

  • 2.

    Hills, S. L. et al. Transmission of Zika virus through sexual contact with travelers to areas of ongoing transmission — continental United States, 2016. MMWR Morb. Mortal Wkly Rep. 65, 215–216 (2016).

    Article  Google Scholar 

  • 3.

    Driggers, R. W. et al. Zika virus infection with prolonged maternal viremia and fetal brain abnormalities. N. Engl. J. Med. 374, 2142–2151 (2016).

    CAS  Article  Google Scholar 

  • 4.

    van Tol, S., Hage, A., Giraldo, M. I., Bharaj, P. & Rajsbaum, R. The TRIMendous role of TRIMs in virus–host interactions. Vaccines (Basel) 5, 23 (2017).

    Article  Google Scholar 

  • 5.

    Byk, L. A. et al. Dengue virus genome uncoating requires ubiquitination. MBio 7, e00804-16 (2016).

    Article  Google Scholar 

  • 6.

    Fernandez-Garcia, M. D. et al. Appraising the roles of CBLL1 and the ubiquitin/proteasome system for flavivirus entry and replication. J. Virol. 85, 2980–2989 (2011).

    CAS  Article  Google Scholar 

  • 7.

    Choy, M. M. et al. Proteasome inhibition suppresses dengue virus egress in antibody dependent infection. PLoS Negl. Trop. Dis. 9, e0004058 (2015).

    Article  Google Scholar 

  • 8.

    Versteeg, G. A. et al. The E3-ligase TRIM family of proteins regulates signaling pathways triggered by innate immune pattern-recognition receptors. Immunity 38, 384–398 (2013).

    CAS  Article  Google Scholar 

  • 9.

    Hage, A. & Rajsbaum, R. To TRIM or not to TRIM: the balance of host–virus interactions mediated by the ubiquitin system. J. Gen. Virol. 100, 1641–1662 (2019).

    Article  Google Scholar 

  • 10.

    Bharaj, P. et al. The host E3-ubiquitin ligase TRIM6 ubiquitinates the Ebola Virus VP35 protein and promotes virus replication. J. Virol. 91, e00833-17 (2017).

    Article  Google Scholar 

  • 11.

    Fink, J. et al. Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl. Trop. Dis. 1, e86 (2007).

    Article  Google Scholar 

  • 12.

    Padilla-S, L., Rodríguez, A., Gonzales, M. M., Gallego-G, J. C. & Castaño-O, J. C. Inhibitory effects of curcumin on dengue virus type 2-infected cells in vitro. Arch. Virol. 159, 573–579 (2014).

    CAS  Article  Google Scholar 

  • 13.

    Choy, M. M., Sessions, O. M., Gubler, D. J. & Ooi, E. E. Production of infectious dengue virus in Aedes aegypti is dependent on the ubiquitin proteasome pathway. PLoS Negl. Trop. Dis. 9, e0004227 (2015).

    Article  Google Scholar 

  • 14.

    Kostyuchenko, V. A. et al. Structure of the thermally stable Zika virus. Nature 533, 425–428 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Pierson, T. C. & Kielian, M. Flaviviruses: braking the entering. Curr. Opin. Virol. 3, 3–12 (2013).

    CAS  Article  Google Scholar 

  • 16.

    Rossi, S. L. et al. Characterization of a novel murine model to study Zika virus. Am. J. Trop. Med. Hyg. 94, 1362–1369 (2016).

    CAS  Article  Google Scholar 

  • 17.

    Zhao, Z. et al. Viral retinopathy in experimental models of Zika infection. Invest. Ophthalmol. Vis. Sci. 58, 4355–4365 (2017).

    CAS  Article  Google Scholar 

  • 18.

    Montori-Grau, M. et al. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle. Metabolism 83, 177–187 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Le Sommer, C., Barrows, N. J., Bradrick, S. S., Pearson, J. L. & Garcia-Blanco, M. A. G protein-coupled receptor kinase 2 promotes flaviviridae entry and replication. PLoS Negl. Trop. Dis. 6, e1820 (2012).

    Article  Google Scholar 

  • 20.

    Skurat, A. V., Dietrich, A. D., Zhai, L. & Roach, P. J. GNIP, a novel protein that binds and activates glycogenin, the self-glucosylating initiator of glycogen biosynthesis. J. Biol. Chem. 277, 19331–19338 (2002).

    CAS  Article  Google Scholar 

  • 21.

    Zhai, L., Dietrich, A., Skurat, A. V. & Roach, P. J. Structure–function analysis of GNIP, the glycogenin-interacting protein. Arch. Biochem. Biophys. 421, 236–242 (2004).

    CAS  Article  Google Scholar 

  • 22.

    Orchard, R. C. et al. Identification of antinorovirus genes in human cells using genome-wide CRISPR activation screening. J. Virol. 93, e01324-18 (2018).

    Article  Google Scholar 

  • 23.

    Lu, M. et al. E3 ubiquitin ligase tripartite motif 7 positively regulates the TLR4-mediated immune response via its E3 ligase domain in macrophages. Mol. Immunol. 109, 126–133 (2019).

    CAS  Article  Google Scholar 

  • 24.

    Chakraborty, A., Diefenbacher, M. E., Mylona, A., Kassel, O. & Behrens, A. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling. Nat. Commun. 6, 6782 (2015).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Napolitano, L. M., Jaffray, E. G., Hay, R. T. & Meroni, G. Functional interactions between ubiquitin E2 enzymes and TRIM proteins. Biochem. J. 434, 309–319 (2011).

    CAS  Article  Google Scholar 

  • 26.

    Chazotte, B. Labeling membrane glycoproteins or glycolipids with fluorescent wheat germ agglutinin. Cold Spring Harb. Protoc. 2011, pdb.prot5623 (2011).

    PubMed  Google Scholar 

  • 27.

    Rossignol, E. D., Peters, K. N., Connor, J. H. & Bullitt, E. Zika virus induced cellular remodelling. Cell. Microbiol. 19, e12740 (2017).

  • 28.

    Gorman, M. J. et al. An immunocompetent mouse model of Zika virus infection. Cell Host Microbe 23, 672–685 (2018).

    CAS  Article  Google Scholar 

  • 29.

    Fontes-Garfias, C. R. et al. Functional analysis of glycosylation of Zika virus envelope protein. Cell Rep. 21, 1180–1190 (2017).

    CAS  Article  Google Scholar 

  • 30.

    Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Frias-Staheli, N. et al. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2, 404–416 (2007).

    CAS  Article  Google Scholar 

  • 32.

    Hamel, R. et al. Biology of Zika virus infection in human skin cells. J. Virol. 89, 8880–8896 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Dai, L. et al. Structures of the Zika virus envelope protein and its complex with a flavivirus broadly protective antibody. Cell Host Microbe 19, 696–704 (2016).

    CAS  Article  Google Scholar 

  • 34.

    Sirohi, D. et al. The 3.8 Å resolution cryo-EM structure of Zika virus. Science 352, 467–470 (2016).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Fibriansah, G. et al. Cryo-EM structure of an antibody that neutralizes dengue virus type 2 by locking E protein dimers. Science 349, 88–91 (2015).

    ADS  CAS  Article  Google Scholar 

  • 36.

    Therkelsen, M. D. et al. Flaviviruses have imperfect icosahedral symmetry. Proc. Natl Acad. Sci. USA 115, 11608–11612 (2018).

    CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top