Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Estimating a social cost of carbon for global energy consumption

  • 1.

    Interagency Working Group on Socal Cost of Carbon Social Cost of Carbon for Regulatory Impact Analysis—under Executive Order 12866 Technical Report (United States Government, 2010).

  • 2.

    Revesz, R. L. et al. Global warming: improve economic models of climate change. Nature 508, 173–175 (2014).

    PubMed  Article  Google Scholar 

  • 3.

    Pizer, W. et al. Using and improving the social cost of carbon. Science 346, 1189–1190 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 4.

    Nordhaus, W. D. An optimal transition path for controlling greenhouse gases. Science 258, 1315–1319 (1992).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 5.

    Greenstone, M., Kopits, E. & Wolverton, A. Developing a social cost of carbon for US regulatory analysis: a methodology and interpretation. Rev. Environ. Econ. Policy 7, 23–46 (2013).

    Article  Google Scholar 

  • 6.

    National Academies of Sciences, Engineering, and Medicine Valuing Climate Damages: Updating Estimation of the Social Cost of Carbon Dioxide (The National Academies Press, 2017).

  • 7.

    Diaz, D. & Moore, F. Quantifying the economic risks of climate change. Nat. Clim. Change 7, 774–782 (2017).

    ADS  Article  Google Scholar 

  • 8.

    Anthoff, D. & Tol, R. S. The uncertainty about the social cost of carbon: a decomposition analysis using FUND. Climatic Change 117, 515–530 (2013).

    ADS  Article  Google Scholar 

  • 9.

    Stern, N. Stern Review Report on the Economics of Climate Change (HM Treasury, 2006).

  • 10.

    Waldhoff, S., Anthoff, D., Rose, S. & Tol, R. S. The marginal damage costs of different greenhouse gases: an application of FUND. Economics 8, 1–33 (2014).

  • 11.

    Nordhaus, W. D. Estimates of the Social Cost of Carbon: Background and Results from the Rice-2011 Model Technical Report (National Bureau of Economic Research, 2011).

  • 12.

    Pindyck, R. S. Climate change policy: what do the models tell us? J. Econ. Lit. 51, 860–872 (2013).

    Article  Google Scholar 

  • 13.

    Burke, M. et al. Opportunities for advances in climate change economics. Science 352, 292–293 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 14.

    Adler, M. et al. Priority for the worse-off and the social cost of carbon. Nat. Clim. Change 7, 443–449 (2017).

    ADS  Article  Google Scholar 

  • 15.

    Moore, F. C., Baldos, U., Hertel, T. & Diaz, D. New science of climate change impacts on agriculture implies higher social cost of carbon. Nat. Commun. 8, 1607 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 16.

    Diaz, D. B. Evaluating the Key Drivers of the US Government’s Social Cost of Carbon: A Model Diagnostic and Inter-Comparison Study of Climate Impacts in DICE, FUND, and PAGE (Stanford University Policy and Economics Research Roundtable, 2014).

  • 17.

    Carleton, T. A. et al. Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits Working Paper 27599 (National Bureau of Economic Research, 2020); http://www.nber.org/papers/w27599

  • 18.

    Hsiang, S. et al. Estimating economic damage from climate change in the United States. Science 356, 1362–1369 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

    ADS  Article  Google Scholar 

  • 20.

    Auffhammer, M., Hsiang, S. M., Schlenker, W. & Sobel, A. Using weather data and climate model output in economic analyses of climate change. Rev. Environ. Econ. Policy 7, 181–198 (2013).

    Article  Google Scholar 

  • 21.

    Kopp, R., Hsiang, S. & Oppenheimer, M. Empirically calibrating damage functions and considering stochasticity when integrated assessment models are used as decision tools. In Impacts World 2013 Conference Proc. 834–843 (Potsdam Institute for Climate Impact Research, 2013).

  • 22.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122, 387–400 (2014).

    ADS  Article  Google Scholar 

  • 23.

    Rasmussen, D. J. & Kopp, R. E. in Economic Risks of Climate Change: An American Prospectus 219–248 (Columbia Univ. Press, 2015); https://cup.columbia.edu/book/economic-risks-of-climate-change/9780231174565

  • 24.

    Hsiang, S. Climate econometrics. Annu. Rev. Resour. Econ. 8, 43–75 (2016).

    Article  Google Scholar 

  • 25.

    Smith, C. J. et al. FAIR v1. 3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Dell, M., Jones, B. F. & Olken, B. A. Temperature shocks and economic growth: evidence from the last half century. Am. Econ. J. Macroecon. 4, 66–95 (2012).

    Article  Google Scholar 

  • 27.

    Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 28.

    Moore, F. C. & Diaz, D. B. Temperature impacts on economic growth warrant stringent mitigation policy. Nat. Clim. Change 5, 127–131 (2015).

    ADS  Article  Google Scholar 

  • 29.

    Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Deschênes, O. & Greenstone, M. Climate change, mortality, and adaptation: evidence from annual fluctuations in weather in the US. Am. Econ. J. Appl. Econ. 3, 152–185 (2011).

    Article  Google Scholar 

  • 31.

    Davis, L. W. & Gertler, P. J. Contribution of air conditioning adoption to future energy use under global warming. Proc. Natl Acad. Sci. USA 112, 5962–5967 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Auffhammer, M., Baylis, P. & Hausman, C. H. Climate change is projected to have severe impacts on the frequency and intensity of peak electricity demand across the United States. Proc. Natl Acad. Sci. USA 114, 1886–1891 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Wenz, L., Levermann, A. & Auffhammer, M. North–south polarization of European electricity consumption under future warming. Proc. Natl Acad. Sci. USA 114, E7910–E7918 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Auffhammer, M. Climate Adaptive Response Estimation: Short and Long Run Impacts of Climate Change on Residential Electricity and Natural Gas Consumption using Big Data Technical Report (National Bureau of Economic Research, 2018).

  • 35.

    Hadley, S. W., Erickson, D. J., Hernandez, J. L., Broniak, C. T. & Blasing, T. Responses of energy use to climate change: a climate modeling study. Geophys. Res. Lett. 33, L17703 (2006).

    ADS  Article  CAS  Google Scholar 

  • 36.

    Zhou, Y., Eom, J. & Clarke, L. The effect of global climate change, population distribution, and climate mitigation on building energy use in the US and China. Climatic Change 119, 979–992 (2013).

    ADS  Article  Google Scholar 

  • 37.

    Isaac, M. & Van Vuuren, D. P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  • 38.

    Clarke, L. et al. Effects of long-term climate change on global building energy expenditures. Energy Econ. 72, 667–677 (2018).

    Article  Google Scholar 

  • 39.

    Gollier, C. & Hammitt, J. K. The long-run discount rate controversy. Annu. Rev. Resour. Econ. 6, 273–295 (2014).

    Article  Google Scholar 

  • 40.

    Bauer, M. & Rudebusch, G. D. The Rising Cost of Climate Change: Evidence from the Bond Market (Federal Reserve Bank of San Francisco, 2020).

  • 41.

    Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).

    ADS  Article  Google Scholar 

  • 42.

    World Energy Balances (Edition 2017) International Energy Agency, 2018); https://www.oecd-ilibrary.org/content/data/9ddec1c1-en

  • 43.

    Rasmussen, D. J., Meinshausen, M. & Kopp, R. E. Probability-weighted ensembles of US county-level climate projections for climate risk analysis. J. Appl. Meteorol. Climatol. 55, 2301–2322 (2016).

    ADS  Article  Google Scholar 

  • 44.

    McNeil, M. A. & Letschert, V. E. Modeling diffusion of electrical appliances in the residential sector. Energy Build. 42, 783–790 (2010).

    Article  Google Scholar 

  • 45.

    Legros, G. et al. The Energy Access Situation in Developing Countries: A Review Focusing on the Least Developed Countries and Sub-Saharan Africa (World Health Organization, 2009).

  • 46.

    Almond, D., Chen, Y., Greenstone, M. & Li, H. Winter heating or clean air? Unintended impacts of China’s Huai River policy. Am. Econ. Rev. 99, 184–190 (2009).

    Article  Google Scholar 

  • 47.

    Ramsey, F. P. A mathematical theory of saving. Econ. J. 38, 543–559 (1928).

    Article  Google Scholar 

  • 48.

    Tong, D. et al. Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature 572, 373–377 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Woodard, D. L., Davis, S. J. & Randerson, J. T. Economic carbon cycle feedbacks may offset additional warming from natural feedbacks. Proc. Natl Acad. Sci. USA 116, 759–764 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Global Administrative Areas GADM Database of Global Administrative Areas, Version 2.0 (University of California, Berkeley, Museum of Vertebrate Zoology, International Rice Research Institute, University of California, Davis, 2012); www.gadm.org/data.html

  • 51.

    Thrasher, B., Maurer, E. P., McKellar, C. & Duffy, P. Technical note: Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 16, 3309–3314 (2012).

    ADS  Article  Google Scholar 

  • 52.

    Riahi, K. et al. RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change 109, 33–57 (2011).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Thomson, A. M. et al. RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change 109, 77 (2011).

    ADS  CAS  Article  Google Scholar 

  • 54.

    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Change 109, 5 (2011).

    ADS  Article  Google Scholar 

  • 55.

    Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic climate projections. Phil. Trans. R. Soc. Lond. A 365, 2053–2075 (2007).

    ADS  MathSciNet  Google Scholar 

  • 56.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article  Google Scholar 

  • 57.

    Samir, K. & Lutz, W. The human core of the shared socioeconomic pathways: population scenarios by age, sex and level of education for all countries to 2100. Glob. Environ. Change 42, 181–192 (2017).

    Article  Google Scholar 

  • 58.

    Cuaresma, J. C. Income projections for climate change research: a framework based on human capital dynamics. Glob. Environ. Change 42, 226–236 (2017).

    Article  Google Scholar 

  • 59.

    Dellink, R., Chateau, J., Lanzi, E. & Magné, B. Long-term economic growth projections in the shared socioeconomic pathways. Glob. Environ. Change 42, 200–214 (2017).

    Article  Google Scholar 

  • 60.

    IIASA Energy Program SSP Database, Version 1.1 Data set Technical Report (National Bureau of Economic Research, 2016); https://tntcat.iiasa.ac.at/SspDb

  • 61.

    Bright, E. A., Coleman, P. R., Rose, A. N. & Urban, M. L. LandScan 2011 (2012); https://web.ornl.gov/sci/landscan/index.shtml

  • 62.

    Jiang, L. & O’Neill, B. C. Global urbanization projections for the shared socioeconomic pathways. Glob. Environ. Change 42, 193–199 (2017).

    Article  Google Scholar 

  • 63.

    Jones, B. & O’Neill, B. C. Spatially explicit global population scenarios consistent with the shared socioeconomic pathways. Environ. Res. Lett. 11, 084003 (2016).

    ADS  Article  Google Scholar 

  • 64.

    Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA. (Integrated Assessment Modeling Consortium & International Institute for Applied Systems Analysis, 2018).

  • 65.

    Carleton, T. A. & Hsiang, S. M. Social and economic impacts of climate. Science 353, aad9837 (2016).

    PubMed  Article  CAS  Google Scholar 

  • 66.

    Auffhammer, M. & Aroonruengsawat, A. Simulating the impacts of climate change, prices and population on California’s residential electricity consumption. Climatic Change 109, 191–210 (2011).

    ADS  Article  Google Scholar 

  • 67.

    Graff Zivin, J. & Neidell, M. Temperature and the allocation of time: implications for climate change. J. Labor Econ. 32, 1–26 (2014).

    Article  Google Scholar 

  • 68.

    Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 69.

    Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2002).

  • 70.

    Millar, R. J., Nicholls, Z. R., Friedlingstein, P. & Allen, M. R. A modified impulse-response representation of the global near-surface air temperature and atmospheric concentration response to carbon dioxide emissions. Atmos. Chem. Phys. 17, 7213–7228 (2017).

    ADS  CAS  Article  Google Scholar 

  • 71.

    Board of Governors of the US Federal Reserve System 10-year Treasury Inflation-indexed Security, Constant Maturity (DFII10) Technical Report (FRED, Federal Reserve Bank of St. Louis, 2020); https://fred.stlouisfed.org/series/DFII10

  • 72.

    Carleton, T. & Greenstone, M. Updating the United States Government’s Social Cost of Carbon Working Paper (Univ. Chicago, Becker Friedman Institute for Economics, 2021).

  • 73.

    Nordhaus, W. A Question of Balance: Weighing the Options on Global Warming Policies (Yale Univ. Press, 2014).

  • 74.

    Arrow, K. J. Global climate change: a challenge to policy. The Economists’ Voice 4, 1–5 (2007).

  • 75.

    Dasgupta, P. The Stern review’s economics of climate change. Natl Inst. Econ. Rev. 199, 4–7 (2007).

    Article  Google Scholar 

  • 76.

    Dasgupta, P. Discounting climate change. J. Risk Uncertain. 37, 141–169 (2008).

    MATH  Article  Google Scholar 

  • 77.

    Hall, R. E. Reconciling cyclical movements in the marginal value of time and the marginal product of labor. J. Polit. Econ. 117, 281–323 (2009).

    Article  Google Scholar 

  • 78.

    Weitzman, M. L. A review of the Stern review on the economics of climate change. J. Econ. Lit. 45, 703–724 (2007).

    Article  Google Scholar 

  • 79.

    Weitzman, M. L. On modeling and interpreting the economics of catastrophic climate change. Rev. Econ. Stat. 91, 1–19 (2009).

    Article  Google Scholar 

  • 80.

    McGrath, G. Natural gas-fired electricity conversion efficiency grows as coal remains stable. Today in Energy https://www.eia.gov/todayinenergy/detail.php?id=32572 (2017).

  • 81.

    Emission factors for greenhouse gas inventories.US Environmental Protection Agency https://www.epa.gov/sites/production/files/2018-03/documents/emission-factors_mar_2018_0.pdf (2018).

  • 82.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *