Expanding ocean food production under climate change

  • United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).

  • Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).

  • FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (2011).

  • Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    ADS  CAS  PubMed  Article  Google Scholar 

  • DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).

    ADS  CAS  Article  Google Scholar 

  • Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).

    Article  Google Scholar 

  • IPCC. IPCC Special Report on Climate Change and Land (2019).

  • Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (2020).

  • Bryndum‐Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).

    ADS  Article  Google Scholar 

  • Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).

    Article  Google Scholar 

  • Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).

    PubMed  Article  Google Scholar 

  • Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).

    Article  Google Scholar 

  • Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305 (2016).

    Article  Google Scholar 

  • Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).

    Article  Google Scholar 

  • Barange, M., Bahri, T., Beveridge, M. & Cochrane, K. L. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).

  • Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).

    Article  Google Scholar 

  • Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).

    ADS  Article  Google Scholar 

  • Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24, 1287–1307 (2016).

    Article  Google Scholar 

  • Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).

    PubMed  Article  Google Scholar 

  • European Union. Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. http://data.europa.eu/eli/reg/2009/710/oj (2009).

  • Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).

    Article  Google Scholar 

  • Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).

    Article  Google Scholar 

  • Troell, M. et al. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9 (2009).

    Article  Google Scholar 

  • Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).

    Article  Google Scholar 

  • Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 99, 13–24 (2019).

    PubMed  Article  CAS  Google Scholar 

  • Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).

    Article  Google Scholar 

  • Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture (FAO, 2017).

  • Soto, D. et al. In Impacts Of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options Ch. 26 (FAO, 2018).

  • Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).

  • Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).

    Article  Google Scholar 

  • Antonello, J. et al. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).

    Article  Google Scholar 

  • Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147 (2006).

    Article  Google Scholar 

  • Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture development and livelihood diversification in the Philippines. Mar. Policy 36, 867–881 (2012).

    Article  Google Scholar 

  • Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  • United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2017).

  • Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).

    Article  Google Scholar 

  • Leape, J. et al. Technology, Data and New Models for Sustainably Managing Ocean Resources (World Resources Institute, 2020).

  • Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 6, 250 (2019).

    Article  Google Scholar 

  • Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • FAO. Aquaculture Development: 7. Aquaculture Governance and Sector Development (2017).

  • Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE 13, e0191086 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jackson, A. Fish in-fish out ratio explained. Aquacult. Eur. 34, 5–10 (2009).

    Google Scholar 

  • Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).

    Article  Google Scholar 

  • Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).

    CAS  Article  Google Scholar 

  • World Bank. Population, Total (2020); https://data.worldbank.org/indicator/SP.POP.TOTL

  • Edwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).

    Article  Google Scholar 

  • Roberts, P. Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products (The Food and Agriculture Organization of the United Nations, 1998).

  • R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).

  • Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species https://www.aquamaps.org/ (2019).

  • García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).

    ADS  Article  Google Scholar 

  • Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).

    Article  Google Scholar 

  • Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).

    Article  Google Scholar 

  • Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).

    PubMed  Article  Google Scholar 

  • Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).

  • Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).

  • FAO. Cultured Aquatic Species (2019).

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).

    ADS  Article  Google Scholar 

  • Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).

    ADS  Article  Google Scholar 

  • Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 7, 226 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).

    PubMed  Article  Google Scholar 

  • Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25, 146–159 (2015).

    Article  Google Scholar 

  • Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4, 154 (2017).

    Article  Google Scholar 

  • World Bank. Adjusted Net National Income per Capita (Current US$) (2019); https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CD

  • World Bank. Pump Price for Diesel Fuel (US$ per liter) (2019); https://data.worldbank.org/indicator/EP.PMP.DESL.CD

  • Piburn, J. wbstats: programmatic access to the World Bank API. R package v.1.0.4 https://cran.r-project.org/web/packages/wbstats/index.html (2018).

  • Rubino, M. (ed.) Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities NOAA Technical Memorandum NMFS F/SPO-103 (US Department of Commerce, 2008).

  • Jackson, A. & Newton, R. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients, with Special Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, University Of Stirling And IFFO, 2016).

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: