Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Fossoriality and evolutionary development in two Cretaceous mammaliamorphs

  • 1.

    Rowe, T. Definition, diagnosis, and origin of Mammalia. J. Vertebr. Paleontol. 8, 241–264 (1988).

    Article  Google Scholar 

  • 2.

    Sues, H.-D. Skull and dentition of two tritylodontid synapsids from the Lower Jurassic of western North America. Bull. Mus. Comp. Zool. 151, 217–268 (1986).

    Google Scholar 

  • 3.

    Sues, H.-D. & Jenkins, F. A. Jr. in Amniote Paleobiology: Perspectives on the Evolution of Mammals, Birds, and Reptiles (eds Carrano, M. T. et al.) 114–152 (Univ. Chicago Press, 2006).

  • 4.

    Averianov, A. O. et al. A tritylodontid synapsid from the Middle Jurassic of Siberia and the taxonomy of derived tritylodontids. J. Vertebr. Paleontol. 37, e1363767 (2017).

    Article  Google Scholar 

  • 5.

    Velazco, P. M., Buczek, A. J. & Novacek, M. J. Two new tritylodontids (Synapsida, Cynodontia, Mammaliamorpha) from the Upper Jurassic, southwestern Mongolia. Am. Mus. Novit. 3874, 1–35 (2017).

    Article  Google Scholar 

  • 6.

    Lopatin, A. V. & Agadjanian, A. K. A tritylodont (Tritylodontidae, Synapsida) from the Mesozoic of Yakutia. Dokl. Biol. Sci. 419, 107–110 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Matsuoka, H., Kusuhashi, N. & Corfe, I. J. A new Early Cretaceous tritylodontid (Synapsida, Cynodontia, Mammaliamorpha) from the Kuwajima Formation (Tetori Group) of central Japan. J. Vertebr. Paleontol. 36, e1112289 (2016).

    Article  Google Scholar 

  • 8.

    Krause, D. W. et al. Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature 581, 421–427 (2020).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 9.

    Meng, J. Mesozoic mammals of China: implications for phylogeny and early evolution of mammals. Natl. Sci. Rev. 1, 521–542 (2014).

    Article  Google Scholar 

  • 10.

    Narita, Y. & Kuratani, S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J. Exp. Zool. 304B, 91–106 (2005).

    Article  Google Scholar 

  • 11.

    Müller, J. et al. Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc. Natl Acad. Sci USA 107, 2118–2123 (2010).

    PubMed  Article  ADS  Google Scholar 

  • 12.

    Sánchez‐Villagra, M. R., Narita, Y. & Kuratani, S. Thoracolumbar vertebral number: the first skeletal synapomorphy for afrotherian mammals. Syst. Biodivers. 5, 1–7 (2007).

    Article  Google Scholar 

  • 13.

    Asher, R. J., Lin, K. H., Kardjilov, N. & Hautier, L. Variability and constraint in the mammalian vertebral column. J. Evol. Biol. 24, 1080–1090 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 14.

    Varela-Lasheras, I. et al. Breaking evolutionary and pleiotropic constraints in mammals: on sloths, manatees and homeotic mutations. Evodevo 2, 11 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Galis, F. et al. Fast running restricts evolutionary change of the vertebral column in mammals. Proc. Natl Acad. Sci. USA 111, 11401−11406 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 16.

    Jones, K. E. et al. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science 361, 1249–1252 (2018).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 17.

    Williams, S. A. et al. Increased variation in numbers of presacral vertebrae in suspensory mammals. Nat. Ecol. Evol. 3, 949–956 (2019).

    PubMed  Article  Google Scholar 

  • 18.

    Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    CAS  PubMed  Google Scholar 

  • 19.

    Richardson, M. K., Allen, S. P., Wright, G. M., Raynaud, A. & Hanken, J. Somite number and vertebrate evolution. Development 125, 151–160 (1998).

    CAS  PubMed  Google Scholar 

  • 20.

    Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 21.

    Dequéant, M.-L. & Pourquié, O. Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet. 9, 370–382 (2008).

    PubMed  Article  CAS  Google Scholar 

  • 22.

    Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 23.

    Hautier, L., Weisbecker, V., Sánchez-Villagra, M. R., Goswami, A. & Asher, R. J. Skeletal development in sloths and the evolution of mammalian vertebral patterning. Proc. Natl Acad. Sci. USA 107, 18903–18908 (2010).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 24.

    Vinagre, T. et al. Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev. Cell 18, 655–661 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Guerreiro, I. et al. Role of a polymorphism in a Hox/Pax-responsive enhancer in the evolution of the vertebrate spine. Proc. Natl Acad. Sci. USA 110, 10682–10686 (2013).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 26.

    Jurberg, A. D., Aires, R., Varela-Lasheras, I., Nóvoa, A. & Mallo, M. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev. Cell 25, 451–462 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Aires, R. et al. Oct4 is a key regulator of vertebrate trunk length diversity. Dev. Cell 38, 262–274 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Head, J. J. & Polly, P. D. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature 520, 86–89 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 29.

    Lewis, G. E. in The Ecology and Biology of Mammal-like Reptiles (eds Hotton, N. et al.) 295−303 (Smithsonian Institution, 1986).

  • 30.

    Chen, M. & Wilson, G. P. A multivariate approach to infer locomotor modes in Mesozoic mammals. Paleobiology 41, 280–312 (2015).

    Article  Google Scholar 

  • 31.

    Luo, Z.-X., Chen, P., Li, G. & Chen, M. A new eutriconodont mammal and evolutionary development in early mammals. Nature 446, 288–293 (2007).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 32.

    Meng, J., Wang, Y. & Li, C. Transitional mammalian middle ear from a new Cretaceous Jehol eutriconodont. Nature 472, 181–185 (2011).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 33.

    Ji, Q., Luo, Z.-X. & Ji, S.-A. A Chinese triconodont mammal and mosaic evolution of the mammalian skeleton. Nature 398, 326–330 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Hou, S.-L. & Meng, J. A new eutriconodont mammal from the Early Cretaceous Jehol biota of Liaoning, China. Chin. Sci. Bull. 59, 546–553 (2014).

    Article  Google Scholar 

  • 35.

    King, B. & Beck, R. M. D. Tip dating supports novel resolutions of controversial relationships among early mammals. Proc. R. Soc. B 287, 20200943 (2020).

    PubMed  Article  Google Scholar 

  • 36.

    Mao, F. et al. Integrated hearing and chewing modules decoupled in a Cretaceous stem therian mammal. Science 367, 305–308 (2020).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 37.

    Shimer, H. Adaptations to aquatic, arboreal, fossorial and cursorial habits in mammals. III. Fossorial adaptations. Am. Nat. 37, 819–825 (1903).

    Article  Google Scholar 

  • 38.

    Hildebrand, M. in Functional Vertebrate Morphology Vol. 6 (eds Hildebrand, M. et al.) 89–109 (Belknap, 1985).

  • 39.

    Salton, J. A. & Sargis, E. J. in Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay (eds Sargis, E. J. & Dagosto, M.) 51–71 (Springer, 2008).

  • 40.

    Wake, M. H. in The Skull Vol. 3 (eds Hanken, J. & Hall, B. K.) 197–240 (Univ. Chicago Press, 1993).

  • 41.

    Kümmell, S., Abdala, F., Sassoon, J. & Abdala, V. Evolution and identity of synapsid carpal bones. Acta Palaeontol. Pol. 65, 649–678 (2020).

    Article  Google Scholar 

  • 42.

    Arlegi, M., Veschambre-Couture, C. & Gómez-Olivencia, A. Evolutionary selection and morphological integration in the vertebral column of modern humans. Am. J. Phys. Anthropol. 171, 17–36 (2020).

    PubMed  Article  Google Scholar 

  • 43.

    Oates, A. C., Morelli, L. G. & Ares, S. Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock. Development 139, 625–639 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Wellik, D. M. Hox patterning of the vertebrate axial skeleton. Dev. Dyn. 236, 2454–2463 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Carapuço, M., Nóvoa, A., Bobola, N. & Mallo, M. Hox genes specify vertebral types in the presomitic mesoderm. Genes Dev. 19, 2116–2121 (2005).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    McIntyre, D. C. et al. Hox patterning of the vertebrate rib cage. Development 134, 2981–2989 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Mallo, M., Wellik, D. M. & Deschamps, J. Hox genes and regional patterning of the vertebrate body plan. Dev. Biol. 344, 7–15 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Böhmer, C. Correlation between Hox code and vertebral morphology in the mouse: towards a universal model for Synapsida. Zool. Lett. 3, 8 (2017).

    Article  ADS  Google Scholar 

  • 49.

    Buchholtz, E. A. et al. Fixed cervical count and the origin of the mammalian diaphragm. Evol. Dev. 14, 399–411 (2012).

    PubMed  Article  Google Scholar 

  • 50.

    Luo, Z.-X. et al. Evolutionary development in basal mammaliaforms as revealed by a docodontan. Science 347, 760–764 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 51.

    Buchholtz, E. A. Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology 117, 64–69 (2014).

    PubMed  Article  Google Scholar 

  • 52.

    Jones, K. E., Benitez, L., Angielczyk, K. D. & Pierce, S. E. Adaptation and constraint in the evolution of the mammalian backbone. BMC Evol. Biol. 18, 172 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Liu, J. & Olsen, P. The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). J. Mamm. Evol. 17, 151–176 (2010).

    Article  ADS  Google Scholar 

  • 54.

    McKenna, M. C. & Bell, S. K. Classification of Mammals: Above the Species Level (Columbia Univ. Press, 1997).

  • 55.

    O’Leary, M. A. et al. The placental mammal ancestor and the post-K–Pg radiation of placentals. Science 339, 662–667 (2013).

    PubMed  Article  ADS  CAS  Google Scholar 

  • 56.

    Wallace, R. V. S., Martínez, R. & Rowe, T. First record of a basal mammaliamorph from the early Late Triassic Ischigualasto Formation of Argentina. PLoS ONE 14, e0218791 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 57.

    Swofford, D. L. Phylogenetic Analysis Using Parsimony, version 4.0b10 (Sinauer Associates, 2002).

  • 58.

    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 60.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 61.

    Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J. Mol. Evol. 39, 306–314 (1994).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 62.

    Rannala, B., Zhu, T. & Yang, Z. Tail paradox, partial identifiability, and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29, 325–335 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 63.

    Zhang, C., Rannala, B. & Yang, Z. Robustness of compound Dirichlet priors for Bayesian inference of branch lengths. Syst. Biol. 61, 779–784 (2012).

    PubMed  Article  Google Scholar 

  • 64.

    Geyer, C. J. Practical Markov chain Monte Carlo. Stat. Sci. 7, 473–483 (1992).

    Google Scholar 

  • 65.

    Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Syst. Biol. 61, 973–999 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  • 66.

    Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 10, e1003919 (2014).

    PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 67.

    Zhang, C., Stadler, T., Klopfstein, S., Heath, T. A. & Ronquist, F. Total-evidence dating under the fossilized birth–death process. Syst. Biol. 65, 228–249 (2016).

    PubMed  Article  Google Scholar 

  • 68.

    Stadler, T. Sampling-through-time in birth-death trees. J. Theor. Biol. 267, 396–404 (2010).

    MathSciNet  PubMed  MATH  Article  ADS  Google Scholar 

  • 69.

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 70.

    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Chen, M., Luo, Z.-X. & Wilson, G. P. The postcranial skeleton of Yanoconodon allini from the Early Cretaceous of Hebei, China, and its implications for locomotor adaptation in eutriconodontan mammals. J. Vertebr. Paleontol. 37, e1315425 (2017).

    Article  Google Scholar 

  • 72.

    Liao, H.-Y., Shen, Y.-B. & Huang, D.-Y. Serrated microstructures on carapaces of Eosestheria (Branchiopoda: Diplostraca) in the Early Cretaceous Jehol biota and discussion on the taxonomic value of these structures. Cretac. Res. 95, 310–317 (2019).

    Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *