Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Functional refolding of the penetration protein on a non-enveloped virus

  • 1.

    Harrison, S. C. in Fields Virology 6th edn (eds Knipe, D. M. & Howley, P. M.) 52–86 (Lippincott Williams and Wilkins, 2013).

  • 2.

    Estes, M. K. & Greenberg, H. in Fields Virology 6th edn (eds Knipe, D. M. & Howley, P. M.) 1347–1401 (Lippincott Williams and Wilkins, 2013).

  • 3.

    Trask, S. D., Ogden, K. M. & Patton, J. T. Interactions among capsid proteins orchestrate rotavirus particle functions. Curr. Opin. Virol. 2, 373–379 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Tihova, M., Dryden, K. A., Bellamy, A. R., Greenberg, H. B. & Yeager, M. Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J. Mol. Biol. 314, 985–992 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 5.

    Kim, I. S., Trask, S. D., Babyonyshev, M., Dormitzer, P. R. & Harrison, S. C. Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J. Virol. 84, 6200–6207 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Settembre, E. C., Chen, J. Z., Dormitzer, P. R., Grigorieff, N. & Harrison, S. C. Atomic model of an infectious rotavirus particle. EMBO J. 30, 408–416 (2011).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Aoki, S. T. et al. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science 324, 1444–1447 (2009).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Abdelhakim, A. H. et al. Structural correlates of rotavirus cell entry. PLoS Pathog. 10, e1004355 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Trask, S. D., Kim, I. S., Harrison, S. C. & Dormitzer, P. R. A rotavirus spike protein conformational intermediate binds lipid bilayers. J. Virol. 84, 1764–1770 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Dormitzer, P. R. et al. Specificity and affinity of sialic acid binding by the rhesus rotavirus VP8* core. J. Virol. 76, 10512–10517 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Delorme, C. et al. Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope. J. Virol. 75, 2276–2287 (2001).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Martínez, M. A., López, S., Arias, C. F. & Isa, P. Gangliosides have a functional role during rotavirus cell entry. J. Virol. 87, 1115–1122 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 13.

    Ramani, S. et al. The VP8* domain of neonatal rotavirus strain G10P[11] binds to type II precursor glycans. J. Virol. 87, 7255–7264 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Hu, L. et al. Cell attachment protein VP8* of a human rotavirus specifically interacts with A-type histo-blood group antigen. Nature 485, 256–259 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Dormitzer, P. R., Greenberg, H. B. & Harrison, S. C. Purified recombinant rotavirus VP7 forms soluble, calcium-dependent trimers. Virology 277, 420–428 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Salgado, E. N., Garcia Rodriguez, B., Narayanaswamy, N., Krishnan, Y. & Harrison, S. C. Visualization of calcium ion loss from rotavirus during cell entry. J. Virol. 92, e01327-18 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Rodríguez, J. M. et al. New insights into rotavirus entry machinery: stabilization of rotavirus spike conformation is independent of trypsin cleavage. PLoS Pathog. 10, e1004157 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Dormitzer, P. R., Nason, E. B., Prasad, B. V. & Harrison, S. C. Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430, 1053–1058 (2004).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Pesavento, J. B., Crawford, S. E., Roberts, E., Estes, M. K. & Prasad, B. V. pH-induced conformational change of the rotavirus VP4 spike: implications for cell entry and antibody neutralization. J. Virol. 79, 8572–8580 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Salgado, E. N., Upadhyayula, S. & Harrison, S. C. Single-particle detection of transcription following rotavirus entry. J. Virol. 91, e00651-17 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Smith, R. E., Zweerink, H. J. & Joklik, W. K. Polypeptide components of virions, top component and cores of reovirus type 3. Virology 39, 791–810 (1969).

    CAS  PubMed  Article  Google Scholar 

  • 22.

    Street, J. E., Croxson, M. C., Chadderton, W. F. & Bellamy, A. R. Sequence diversity of human rotavirus strains investigated by northern blot hybridization analysis. J. Virol. 43, 369–378 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Fiore, L. et al. Antigenicity, immunogenicity and passive protection induced by immunization of mice with baculovirus-expressed VP7 protein from rhesus rotavirus. J. Gen. Virol. 76, 1981–1988 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Mackow, E. R., Barnett, J. W., Chan, H. & Greenberg, H. B. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J. Virol. 63, 1661–1668 (1989).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Trask, S. D. & Dormitzer, P. R. Assembly of highly infectious rotavirus particles recoated with recombinant outer capsid proteins. J. Virol. 80, 11293–11304 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Greenberg, H. B. et al. Production and preliminary characterization of monoclonal antibodies directed at two surface proteins of rhesus rotavirus. J. Virol. 47, 267–275 (1983).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Padilla-Noriega, L. et al. Serologic analysis of human rotavirus serotypes P1A and P2 by using monoclonal antibodies. J. Clin. Microbiol. 31, 622–628 (1993).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Bell, J. M., Chen, M., Baldwin, P. R. & Ludtke, S. J. High resolution single particle refinement in EMAN2.1. Methods 100, 25–34 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Jenni, S. et al. In situ structure of rotavirus VP1 RNA-dependent RNA polymerase. J. Mol. Biol. 431, 3124–3138 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. eLife 7, e35383 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Scheres, S. H. Beam-induced motion correction for sub-megadalton cryo-EM particles. eLife 3, e03665 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Ding, K. et al. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Nat. Commun. 10, 2216 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Mastronarde, D. N. & Held, S. R. Automated tilt series alignment and tomographic reconstruction in IMOD. J. Struct. Biol. 197, 102–113 (2017).

    PubMed  Article  Google Scholar 

  • 37.

    Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    PubMed  Article  Google Scholar 

  • 38.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  CAS  Google Scholar 

  • 39.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS  Article  Google Scholar 

  • 40.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D 66, 12–21 (2010).

    CAS  Article  Google Scholar 

  • 41.

    Iancu, C. V. et al. Electron cryotomography sample preparation using the Vitrobot. Nat. Protoc. 1, 2813–2819 (2006).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  Article  Google Scholar 

  • 43.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Galaz-Montoya, J. G., Flanagan, J., Schmid, M. F. & Ludtke, S. J. Single particle tomography in EMAN2. J. Struct. Biol. 190, 279–290 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  • 46.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 47.

    Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Gouet, P., Courcelle, E., Stuart, D. I. & Métoz, F. ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15, 305–308 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 50.

    Gorziglia, M., Larralde, G., Kapikian, A. Z. & Chanock, R. M. Antigenic relationships among human rotaviruses as determined by outer capsid protein VP4. Proc. Natl Acad. Sci. USA 87, 7155–7159 (1990).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 51.

    Martella, V. et al. Molecular analysis of the VP7, VP4, VP6, NSP4, and NSP5/6 genes of a buffalo rotavirus strain: identification of the rare P[3] rhesus rotavirus-like VP4 gene allele. J. Clin. Microbiol. 41, 5665–5675 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Matthijnssens, J. et al. Full genome-based classification of rotaviruses reveals a common origin between human Wa-like and porcine rotavirus strains and human DS-1-like and bovine rotavirus strains. J. Virol. 82, 3204–3219 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Patton, J. T. Rotavirus diversity and evolution in the post-vaccine world. Discov. Med. 13, 85–97 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Afonine, P. V. phenix.mtriage: a tool for analysis and validation of cryo-EM 3D reconstructions. Comput. Crystallogr. Newsl. 8, 25 (2017).

    Google Scholar 

  • 55.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top