Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Layer Hall effect in a 2D topological axion antiferromagnet

  • 1.

    Néel, L. Nobel Lecture: Magnetism and the local molecular field. Nobel Lectures, Physics 1963–1970 (Elsevier, 1970).

  • 2.

    Li, X., Cao, T., Niu, Q., Shi, J. & Feng, J. Coupling the valley degree of freedom to antiferromagnetic order. Proc. Natl Acad. Sci. USA 110, 3738–3742 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Gao, Y., Yang, S. A. & Niu, Q. Field induced positional shift of Bloch electrons and its dynamical implications. Phys. Rev. Lett. 112, 166601 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 4.

    Chen, H., Niu, Q. & MacDonald, A. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 5.

    Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 6.

    Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 7.

    Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Article  CAS  Google Scholar 

  • 8.

    Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Article  Google Scholar 

  • 9.

    Xu, Y. et al. High-throughput calculations of magnetic topological materials. Nature 586, 702–707 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 10.

    Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 12.

    Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 13.

    Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 14.

    Wang, J., Lian, B. & Zhang, S.-C. Generation of spin currents by magnetic field in \({\mathscr{T}}\)-and \({\mathscr{P}}\)-broken materials. Spin 9, 1940013 (2019).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 16.

    Armitage, N. P. & Wu, L. On the matter of topological insulators as magnetoelectrics. SciPost Phys. 6, 046 (2019).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 17.

    Šmejkal, L., González-Hernández, R., Jungwirth, T. & Sinova, J. Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 18.

    Du, S. et al. Berry curvature engineering by gating two-dimensional antiferromagnets. Phys. Rev. Res. 2, 022025 (2020).

    CAS  Article  Google Scholar 

  • 19.

    Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in \({\mathscr{P}}{\mathscr{T}}\)-symmetric magnetic topological quantum materials. npj Comput. Mater. 6, 199 (2020).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Fei, R., Song, W. & Yang, L. Giant linearly-polarized photogalvanic effect and second harmonic generation in two-dimensional axion insulators. Phys. Rev. B 102, 035440 (2020).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Li, R., Wang, J., Qi, X.-L. & Zhang, S.-C. Dynamical axion field in topological magnetic insulators. Nat. Phys. 6, 284–288 (2010).

    CAS  Article  Google Scholar 

  • 22.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  • 23.

    Mak, K. F., McGill, K. L., Park, J. & McEuen, P. L. The valley Hall effect in MoS2 transistors. Science 344, 1489–1492 (2014).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 24.

    Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 25.

    Rienks, E. D. L. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 576, 423–428 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 26.

    Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    CAS  Article  Google Scholar 

  • 27.

    Yan, J.-Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Article  Google Scholar 

  • 28.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 29.

    Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 30.

    Ge, J. et al. High-Chern-number and high-temperature quantum Hall effect without Landau levels. Natl Sci. Rev. 7, 1280–1287 (2020).

    CAS  Article  Google Scholar 

  • 31.

    Liu, C. et al. Helical Chern insulator phase with broken time-reversal symmetry in MnBi2Te4. Preprint at https://arxiv.org/abs/1910.13943 (2020).

  • 32.

    Deng, H. et al. High-temperature quantum anomalous Hall regime in a MnBi2Te4/Bi2Te3 superlattice. Nat. Phys. 17, 36–42 (2021).

    CAS  Article  Google Scholar 

  • 33.

    Ovchinnikov, D. et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 21, 2544–2550 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 34.

    Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 36.

    Chang, C.-Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 37.

    Iyama, A. & Kimura, T. Magnetoelectric hysteresis loops in Cr2O3 at room temperature. Phys. Rev. B 87, 180408(R) (2013).

    ADS  Article  CAS  Google Scholar 

  • 38.

    Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 39.

    Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 40.

    Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 41.

    Zhang, S. et al. Experimental observation of the gate-controlled reversal of the anomalous Hall effect in the intrinsic magnetic topological insulator MnBi2Te4 device. Nano Lett. 20, 709–714 (2020).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 42.

    Gordon, K. N. et al. Strongly gapped topological surface states on protected surfaces of antiferromagnetic MnBi4Te7 and MnBi6Te10. Preprint at https://arxiv.org/abs/1910.13943 (2019).

  • 43.

    Chen, Y. J. et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041040 (2019).

    CAS  Google Scholar 

  • 44.

    Hao, Y.-J. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019).

    CAS  Google Scholar 

  • 45.

    Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020).

    ADS  CAS  Article  Google Scholar 

  • 46.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 47.

    Zhao, S. Y. F. et al. Sign reversing Hall effect in atomically thin high temperature superconductors. Phys. Rev. Lett. 122, 247001 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 48.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 49.

    Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 50.

    Taychatanapat, T. & Jarillo-Herrero, P. Electronic transport in dual-gated bilayer graphene at large displacement fields. Phys. Rev. Lett. 105, 166601 (2010).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 51.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS  CAS  Article  Google Scholar 

  • 52.

    Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 53.

    Souza, I., Marzari, N. & Vanderbilt, D. Maximally localized Wannier functions for entangled energy bands. Phys. Rev. B 65, 035109 (2001).

    ADS  Article  CAS  Google Scholar 

  • 54.

    Newhouse-Illige, T. et al. Voltage-controlled interlayer coupling in perpendicularly magnetized magnetic tunnel junctions. Nat. Commun. 8, 15232 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    ADS  Article  CAS  Google Scholar 

  • 56.

    Hirsch, S. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    ADS  CAS  Article  Google Scholar 

  • 57.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  PubMed  Article  CAS  Google Scholar 

  • 58.

    Manna, K. et al. From colossal to zero: controlling the anomalous Hall effect in magnetic Heusler compounds via Berry curvature design. Phys. Rev. X 8, 041045 (2018).

    CAS  Google Scholar 

  • 59.

    Yasuda, K. et al. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 27, eabd3230 (2021).

    Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top