Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Loop extrusion mediates physiological Igh locus contraction for RAG scanning

  • 1.

    Zhang, Y. et al. The fundamental role of chromatin loop extrusion in physiological V(D)J recombination. Nature 573, 600–604 (2019).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Ba, Z. et al. CTCF orchestrates long-range cohesin-driven V(D)J recombinational scanning. Nature 586, 305–310 (2020).

    CAS  Article  Google Scholar 

  • 3.

    Hu, J. et al. Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163, 947–959 (2015).

    CAS  Article  Google Scholar 

  • 4.

    Guo, C. et al. CTCF-binding elements mediate control of V(D)J recombination. Nature 477, 424–430 (2011).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Jain, S., Ba, Z., Zhang, Y., Dai, H. Q. & Alt, F. W. CTCF-binding elements mediate accessibility of RAG substrates during chromatin scanning. Cell 174, 102–116.e14 (2018).

    CAS  Article  Google Scholar 

  • 6.

    Lucas, J. S., Zhang, Y., Dudko, O. K. & Murre, C. 3D trajectories adopted by coding and regulatory DNA elements: first-passage times for genomic interactions. Cell 158, 339–352 (2014).

    CAS  Article  Google Scholar 

  • 7.

    Medvedovic, J. et al. Flexible long-range loops in the VH gene region of the Igh locus facilitate the generation of a diverse antibody repertoire. Immunity 39, 229–244 (2013).

    CAS  Article  Google Scholar 

  • 8.

    Proudhon, C., Hao, B., Raviram, R., Chaumeil, J. & Skok, J. A. Long-range regulation of V(D)J recombination. Adv. Immunol. 128, 123–182 (2015).

    CAS  Article  Google Scholar 

  • 9.

    Ebert, A., Hill, L. & Busslinger, M. Spatial regulation of V-(D)J recombination at antigen receptor loci. Adv. Immunol. 128, 93–121 (2015).

    CAS  Article  Google Scholar 

  • 10.

    Kueng, S. et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127, 955–967 (2006).

    CAS  Article  Google Scholar 

  • 11.

    Bolland, D. J. et al. Two mutually exclusive local chromatin states drive efficient V(D)J recombination. Cell Rep. 15, 2475–2487 (2016).

    CAS  Article  Google Scholar 

  • 12.

    Choi, N. M. et al. Deep sequencing of the murine IgH repertoire reveals complex regulation of nonrandom V gene rearrangement frequencies. J. Immunol. 191, 2393–2402 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Lin, S. G. et al. Highly sensitive and unbiased approach for elucidating antibody repertoires. Proc. Natl Acad. Sci. USA 113, 7846–7851 (2016).

    CAS  Article  Google Scholar 

  • 14.

    Hu, J. et al. Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nat. Protoc. 11, 853–871 (2016).

    CAS  Article  Google Scholar 

  • 15.

    Ebert, A. et al. The distal V(H) gene cluster of the Igh locus contains distinct regulatory elements with Pax5 transcription factor-dependent activity in pro-B cells. Immunity 34, 175–187 (2011).

    CAS  Article  Google Scholar 

  • 16.

    Hill, L. et al. Wapl repression by Pax5 promotes V gene recombination by Igh loop extrusion. Nature 584, 142–147 (2020).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Zhang, X. et al. Fundamental roles of chromatin loop extrusion in antibody class switching. Nature 575, 385–389 (2019).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Muljo, S. A. & Schlissel, M. S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nat. Immunol. 4, 31–37 (2003).

    CAS  Article  Google Scholar 

  • 19.

    Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006).

    ADS  CAS  Article  Google Scholar 

  • 20.

    Barajas-Mora, E. M. et al. A B-cell-specific enhancer orchestrates nuclear architecture to generate a diverse antigen receptor repertoire. Mol. Cell 73, 48–60.e5 (2019).

    CAS  Article  Google Scholar 

  • 21.

    Buheitel, J. & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32, 666–676 (2013).

    CAS  Article  Google Scholar 

  • 22.

    Eichinger, C. S., Kurze, A., Oliveira, R. A. & Nasmyth, K. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J. 32, 656–665 (2013).

    CAS  Article  Google Scholar 

  • 23.

    Chan, K. L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974 (2012).

    CAS  Article  Google Scholar 

  • 24.

    Busslinger, G. A. et al. Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544, 503–507 (2017).

    ADS  CAS  Article  Google Scholar 

  • 25.

    Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    CAS  Article  Google Scholar 

  • 26.

    Haarhuis, J. H. I. et al. The cohesin release factor WAPL restricts chromatin loop extension. Cell 169, 693–707.e14 (2017).

    CAS  Article  Google Scholar 

  • 27.

    Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. eLife 9, e52091 (2020).

    CAS  Article  Google Scholar 

  • 28.

    Li, Y. et al. The structural basis for cohesin-CTCF-anchored loops. Nature 578, 472–476 (2020).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Natsume, T., Kiyomitsu, T., Saga, Y. & Kanemaki, M. T. Rapid protein depletion in human cells by auxin-inducible degron tagging with short homology donors. Cell Rep. 15, 210–218 (2016).

    CAS  Article  Google Scholar 

  • 30.

    Tedeschi, A. et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501, 564–568 (2013).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Haarhuis, J. H. et al. WAPL-mediated removal of cohesin protects against segregation errors and aneuploidy. Curr. Biol. 23, 2071–2077 (2013).

    CAS  Article  Google Scholar 

  • 32.

    Qiu, X. et al. Sequential enhancer sequestration dysregulates recombination center formation at the IgH locus. Mol. Cell 70, 21–33.e6 (2018).

    CAS  Article  Google Scholar 

  • 33.

    Dai, H. Q. et al. Direct analysis of brain phenotypes via neural blastocyst complementation. Nat. Protoc. 15, 3154–3181 (2020).

    CAS  Article  Google Scholar 

  • 34.

    Chen, J., Lansford, R., Stewart, V., Young, F. & Alt, F. W. RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl Acad. Sci. USA 90, 4528–4532 (1993).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Sayegh, C. E., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).

    CAS  Article  Google Scholar 

  • 36.

    Tseng, A., Inuzuka, H., Gao, D., Singh, A. & Wei, W. Experimental approaches to investigate the proteasomal degradation pathways involved in regulation of apoptosis. Methods Enzymol. 446, 205–223 (2008).

    CAS  Article  Google Scholar 

  • 37.

    Chen, H. et al. BCR selection and affinity maturation in Peyer’s patch germinal centres. Nature 582, 421–425 (2020).

    ADS  CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top