Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

m6A RNA methylation regulates the fate of endogenous retroviruses

  • 1.

    Johnson, W. E. Origins and evolutionary consequences of ancient endogenous retroviruses. Nat. Rev. Microbiol. 17, 355–370 (2019).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Barau, J. et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909–912 (2016).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Tam, O. H., Ostrow, L. W. & Gale Hammell, M. Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease. Mob. DNA 10, 32 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 4.

    Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell 74, 640–650 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Patil, D. P., Pickering, B. F. & Jaffrey, S. R. Reading m6A in the transcriptome: m6A-binding proteins. Trends Cell Biol. 28, 113–127 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 6.

    Goodier, J. L. & Kazazian, H. H., Jr. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135, 23–35 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Gagnier, L., Belancio, V. P. & Mager, D. L. Mouse germ line mutations due to retrotransposon insertions. Mob. DNA 10, 15 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Hancks, D. C. & Kazazian, H. H. Jr. Roles for retrotransposon insertions in human disease. Mob. DNA 7, 9 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 9.

    Zamudio, N. & Bourc’his, D. Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity 105, 92–104 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 10.

    Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 11.

    Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 12.

    Fukuda, K., Okuda, A., Yusa, K. & Shinkai, Y. A CRISPR knockout screen identifies SETDB1-target retroelement silencing factors in embryonic stem cells. Genome Res. 28, 846–858 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Liu, X. et al. UHRF1 targets DNMT1 for DNA methylation through cooperative binding of hemi-methylated DNA and methylated H3K9. Nat. Commun. 4, 1563 (2013).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 14.

    Sadic, D. et al. Atrx promotes heterochromatin formation at retrotransposons. EMBO Rep. 16, 836–850 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Maksakova, I. A. et al. H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics Chromatin 4, 12 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Wen, J. et al. Zc3h13 regulates nuclear RNA m6A methylation and mouse embryonic stem cell self-renewal. Mol. Cell 69, 1028–1038.e6 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Ping, X. L. et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24, 177–189 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Greenberg, M. V. C. & Bourc’his, D. Cultural relativism: maintenance of genomic imprints in pluripotent stem cell culture systems. Curr. Opin. Genet. Dev. 31, 42–49 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 19.

    Liu, J. et al. N6-methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science 367, 580–586 (2020).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Geula, S. et al. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 21.

    Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 22.

    Batista, P. J. et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Meyer, K. D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Abakir, A. et al. N6-methyladenosine regulates the stability of RNA:DNA hybrids in human cells. Nat. Genet. 52, 48–55 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 26.

    Li, Y. et al. N6-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat. Genet. 52, 870–877 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Zaccara, S. & Jaffrey, S. R. A unified model for the function of YTHDF proteins in regulating m6A-modified mRNA. Cell 181, 1582–1595.e18 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Lasman, L. et al. Context-dependent functional compensation between Ythdf m6A reader proteins. Genes Dev. 34, 1373–1391 (2020).

    CAS  PubMed  Google Scholar 

  • 29.

    Ries, R. J. et al. m6A enhances the phase separation potential of mRNA. Nature 571, 424–428 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Lu, C., Contreras, X. & Peterlin, B. M. P. P bodies inhibit retrotransposition of endogenous intracisternal A particles. J. Virol. 85, 6244–6251 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Haeussler, M. et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 17, 148 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 32.

    Walter, M., Teissandier, A., Pérez-Palacios, R. & Bourc’his, D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. eLife 5, 1–30 (2016).

    Article  Google Scholar 

  • 33.

    Chen, C. Y. A., Ezzeddine, N. & Shyu, A. B. Messenger RNA half-life measurements in mammalian cells. Methods Enzymol. 448, 335–357 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Skene, P. J. & Henikoff, S. An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6, 1–35 (2017).

    Google Scholar 

  • 35.

    Didion, J. P., Martin, M. & Collins, F. S. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ 5, e3720 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 36.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Bailly-Bechet, M., Haudry, A. & Lerat, E. ‘One code to find them all’: a perl tool to conveniently parse RepeatMasker output files. Mob. DNA 5, 1–15 (2014).

    Article  CAS  Google Scholar 

  • 38.

    Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 39.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 41.

    Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics 32, 289–291 (2016).

    CAS  PubMed  Google Scholar 

  • 42.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 43.

    Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44 (W1), W160–W165 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 44.

    Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 45.

    Zhang, T., Zhang, S. W., Zhang, L. & Meng, J. trumpet: transcriptome-guided quality assessment of m6A-seq data. BMC Bioinformatics 19, 260 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 46.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top