Machine learning-aided engineering of hydrolases for PET depolymerization

  • Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    ADS  Article  Google Scholar 

  • Santos, R. G., Machovsky-Capuska, G. E. & Andrades, R. Plastic ingestion as an evolutionary trap: toward a holistic understanding. Science 373, 56–60 (2021).

    ADS  CAS  Article  Google Scholar 

  • MacLeod, M., Arp, H. P. H., Tekman, M. B. & Jahnke, A. The global threat from plastic pollution. Science 373, 61–65 (2021).

    ADS  CAS  Article  Google Scholar 

  • Chen, C. C., Dai, L., Ma, L. & Guo, R. T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 4, 114–126 (2020).

  • George, N. & Kurian, T. Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind. Eng. Chem. Res. 53, 14185–14198 (2014).

    CAS  Article  Google Scholar 

  • Simon, N. et al. A binding global agreement to address the life cycle of plastics. Science 373, 43–47 (2021).

    ADS  CAS  Article  Google Scholar 

  • Kawai, F., Kawabata, T. & Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 103, 4253–4268 (2019).

    CAS  Article  Google Scholar 

  • Sarah, K. & Gloria, R. Achieving a circular bioeconomy for plastics. Science 373, 49–50 (2021).

    Article  Google Scholar 

  • Ru, J., Huo, Y. & Yang, Y. Microbial degradation and valorization of plastic wastes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00442 (2020).

  • Ellis, L. D. et al. Chemical and biological catalysis for plastics recycling and upcycling. Nat. Catal. 4, 539–556 (2021).

    CAS  Article  Google Scholar 

  • Taniguchi, I. et al. Biodegradation of PET: current status and application aspects. ACS Catal. https://doi.org/10.1021/acscatal.8b05171 (2019).

  • Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580, 216–219 (2020).

    ADS  CAS  Article  Google Scholar 

  • Inderthal, H., Tai, S. L. & Harrison, S. T. L. Non-hydrolyzable plastics – an interdisciplinary look at plastic bio-oxidation. Trends Biotechnol. 39, 12–23 (2021).

    CAS  Article  Google Scholar 

  • Yoshida, S. et al. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351, 1196–1199 (2016).

    ADS  CAS  Article  Google Scholar 

  • Chen, C. C. et al. General features to enhance enzymatic activity of poly(ethylene terephthalate) hydrolysis. Nat. Catal. https://doi.org/10.1038/s41929-021-00616-y (2021).

  • Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a persistent marine pollutant. Ann. Rev. Env. Resourc.https://doi.org/10.1146/annurev-environ-102016-060700 (2017).

  • Son, H. F. et al. Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation. ACS Catal. 9, 3519–3526 (2019).

    CAS  Article  Google Scholar 

  • Austin, H. P. et al. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc. Natl Acad. Sci. USA 115, E4350–E4357 (2018).

    CAS  Article  Google Scholar 

  • Joo, S. et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation. Nat. Commun. 9, 382 (2018).

    ADS  Article  Google Scholar 

  • Han, X. et al. Structural insight into catalytic mechanism of PET hydrolase. Nat. Commun. 8, 2106 (2017).

    ADS  Article  Google Scholar 

  • Furukawa, M., Kawakami, N., Oda, K. & Miyamoto, K. Acceleration of enzymatic degradation of poly(ethylene terephthalate) by surface coating with anionic surfactants. Chem. Sus. Chem. 11, 4018–4025 (2018).

    CAS  Article  Google Scholar 

  • Cui, Y. et al. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy. ACS Catal. https://doi.org/10.1021/acscatal.0c05126 (2021).

  • Chen, K., Hu, Y., Dong, X. & Sun, Y. Molecular insights into the enhanced performance of ekylated petase toward PET degradation. ACS Catal. 11, 7358–7370 (2021).

    CAS  Article  Google Scholar 

  • Shroff, R. et al. Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth. Biol. 9, 2927–2935 (2020).

    CAS  Article  Google Scholar 

  • Kawai, F. et al. A novel Ca2+-activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl. Microbiol. Biotechnol. 98, 10053–10064 (2014).

    CAS  Article  Google Scholar 

  • Weissmann, D. Applied Plastics Engineering Handbook: Processing, Materials, and Applications 2nd edn (ed. Kutz, M.) 717–741 (William Andrew Publishing, 2017).

  • Wallace, N. E. et al. The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environ. Microbiol. Rep. 12, 578–582 (2020).

    CAS  Article  Google Scholar 

  • Wei, R. & Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we? Microb. Biotechnol. 10, 1308–1322 (2017).

    CAS  Article  Google Scholar 

  • Kawai, F., Kawabata, T. & Oda, M. Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustain. Chem. Eng. 8, 8894–8908 (2020).

    CAS  Article  Google Scholar 

  • Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Article  Google Scholar 

  • Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  • Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D, Struct. Biol. 75, 861–877 (2019).

    CAS  Article  Google Scholar 

  • Fujita, M. et al. Cloning and nucleotide sequence of the gene (amyP) for maltotetraose-forming amylase from Pseudomonas stutzeri MO-19. J. Bacteriol. 171, 1333–1339 (1989).

    CAS  Article  Google Scholar 

  • Leonard, S. P. et al. Genetic engineering of bee gut microbiome bacteria with a toolkit for modular assembly of broad-host-range plasmids. ACS Synth. Biol. 7, 1279–1290 (2018).

    CAS  Article  Google Scholar 

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: