Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Neural control of affiliative touch in prosocial interaction

  • 1.

    de Waal, F. B. M. & Preston, S. D. Mammalian empathy: behavioural manifestations and neural basis. Nat. Rev. Neurosci. 18, 498–509 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 2.

    Dunfield, K. A. A construct divided: prosocial behavior as helping, sharing, and comforting subtypes. Front. Psychol 5, 958 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 3.

    Rault, J.-L. Be kind to others: prosocial behaviours and their implications for animal welfare. Appl. Anim. Behav. Sci. 210, 113–123 (2019).

    Article  Google Scholar 

  • 4.

    Morrison, I. Keep calm and cuddle on: social touch as a stress buffer. Adapt. Hum. Behav. Physiol. 2, 344–362 (2016).

    Article  Google Scholar 

  • 5.

    Spruijt, B. M., Hooff, J. A. V. & Gispen, W. H. Ethology and neurobiology of grooming behavior. Physiol. Rev. 72, 825–852 (1992).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Jablonski, N. G. Social and affective touch in primates and its role in the evolution of social cohesion. Neuroscience 464, 117–125 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 7.

    Burkett, J. P. et al. Oxytocin-dependent consolation behavior in rodents. Science 351, 375–378 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Li, L.-F. et al. Involvement of oxytocin and GABA in consolation behavior elicited by socially defeated individuals in mandarin voles. Psychoneuroendocrinology 103, 14–24 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 9.

    Sterley, T.-L. & Bains, J. S. Social communication of affective states. Curr. Opin. Neurobiol. 68, 44–51 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 10.

    Paradiso, E., Gazzola, V. & Keysers, C. Neural mechanisms necessary for empathy-related phenomena across species. Curr. Opin. Neurobiol. 68, 107–115 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 11.

    Kwon, J.-T. et al. An amygdala circuit that suppresses social engagement. Nature 593, 114–118 (2021).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Chen, P. & Hong, W. Neural circuit mechanisms of social behavior. Neuron 98, 16–30 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 13.

    Raam, T. & Hong, W. Organization of neural circuits underlying social behavior: a consideration of the medial amygdala. Curr. Opin. Neurobiol. 68, 124–136 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Unger, E. K. et al. Medial amygdalar aromatase neurons regulate aggression in both sexes. Cell Rep. 10, 453–462 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 15.

    Li, Y. et al. Neuronal representation of social information in the medial amygdala of awake behaving mice. Cell 171, 1176–1190 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 16.

    Twining, R. C., Vantrease, J. E., Love, S., Padival, M. & Rosenkranz, J. A. An intra-amygdala circuit specifically regulates social fear learning. Nat. Neurosci. 20, 459–469 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Hong, W., Kim, D.-W. & Anderson, D. J. Antagonistic control of social versus repetitive self-grooming behaviors by separable amygdala neuronal subsets. Cell 158, 1348–1361 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Chen, P. B. et al. Sexually dimorphic control of parenting behavior by the medial amygdala. Cell 176, 1206–1221 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Allsop, S. A. et al. Corticoamygdala transfer of socially derived information gates observational learning. Cell 173, 1329–1342 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Sterley, T.-L. et al. Social transmission and buffering of synaptic changes after stress. Nat. Neurosci. 21, 393–403 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 22.

    Gangopadhyay, P., Chawla, M., Monte, O. D. & Chang, S. W. C. Prefrontal–amygdala circuits in social decision-making. Nat. Neurosci. 24, 5–18 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 23.

    Canteras, N. S., Simerly, R. B. & Swanson, L. W. Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 360, 213–245 (1995).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 24.

    Cádiz-Moretti, B., Otero-García, M., Martínez-García, F. & Lanuza, E. Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Struct. Funct. 221, 1033–1065 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 25.

    Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun. 9, 4125 (2018).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 26.

    Fenno, L. E. et al. Targeting cells with single vectors using multiple-feature Boolean logic. Nat. Methods 11, 763–772 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 28.

    Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 29.

    Lim, B. K., Huang, K. W., Grueter, B. A., Rothwell, P. E. & Malenka, R. C. Anhedonia requires MC4R-mediated synaptic adaptations in nucleus accumbens. Nature 487, 183–189 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Ghosh, K. K. et al. Miniaturized integration of a fluorescence microscope. Nat. Methods 8, 871–878 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Kingsbury, L. et al. Correlated neural activity and encoding of behavior across brains of socially interacting animals. Cell 178, 429–446 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Pnevmatikakis, E. A. & Giovannucci, A. NoRMCorre: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. Elife 7, e28728 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • 34.

    Kingsbury, L. et al. Cortical representations of conspecific sex shape social behavior. Neuron 107, 941–953 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 35.

    Hong, W. et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning. Proc. Natl Acad. Sci. USA 112, E5351–E5360 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    Wiltschko, A. B. et al. Mapping sub-second structure in mouse behavior. Neuron 88, 1121–1135 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Kabra, M., Robie, A. A., Rivera-Alba, M., Branson, S. & Branson, K. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10, 64–67 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 38.

    Jhuang, H. et al. Automated home-cage behavioural phenotyping of mice. Nat. Commun. 1, 68 (2010).

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  • 39.

    Nilsson, S. R. et al. Simple Behavioral Analysis (SimBA)—an open source toolkit for computer classification of complex social behaviors in experimental animals. Preprint at bioRxiv https://doi.org/10.1101/2020.04.19.049452 (2020).

  • 40.

    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    ADS  CAS  Article  Google Scholar 

  • 41.

    Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the inception architecture for computer vision. Preprint at https://arxiv.org/abs/1512.00567v3 (2015).

  • 42.

    Pereira, T. D. et al. SLEAP: multi-animal pose tracking. Preprint at bioRxiv https://doi.org/10.1101/2020.08.31.276246 (2020).

  • 43.

    Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 44.

    Lipton, Z. C., Berkowitz, J. & Elkan, C. A critical review of recurrent neural networks for sequence learning. Preprint at https://arxiv.org/abs/1506.00019 (2015).

  • 45.

    Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 46.

    Harris, J. A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Daigle, T. L. et al. A suite of transgenic driver and reporter mouse lines with enhanced brain-cell-type targeting and functionality. Cell 174, 465–480 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 49.

    Hu, R. K. et al. An amygdala-to-hypothalamus circuit for social reward. Nat. Neurosci. 24, 831–842 (2021).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Stuber, G. D. et al. Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377–380 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 52.

    Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top