Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Orthogonal-array dynamic molecular sieving of propylene/propane mixtures

  • 1.

    Yang, R. T. Gas Separation by Adsorption Processes (Imperial College Press, 1997).

  • 2.

    Lin, R. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    ADS  CAS  Article  Google Scholar 

  • 3.

    Lin, J. Y. S. Molecular sieves for gas separation. Science 353, 121–122 (2016).

    ADS  CAS  Article  Google Scholar 

  • 4.

    Zhou, D. et al. Intermediate-sized molecular sieving of styrene from larger and smaller analogues. Nat. Mater. 18, 994–998 (2019).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Shimomura, S. et al. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer. Nat. Chem. 2, 633–637 (2010).

    CAS  Article  Google Scholar 

  • 6.

    Zhang, X.-W. et al. Tuning the gating energy barrier of metal–organic framework for molecular sieving. Chem. 7, 1006–1019 (2021).

    CAS  Article  Google Scholar 

  • 7.

    Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  Article  Google Scholar 

  • 8.

    Zhou, H. C. & Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 43, 5415–5418 (2014).

    CAS  Article  Google Scholar 

  • 9.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Article  Google Scholar 

  • 10.

    Chen, B., Xiang, S. C. & Qian, G. D. Metal–organic frameworks with functional pores for recognition of small molecules. Acc. Chem. Res. 43, 1115–1124 (2010).

    CAS  Article  Google Scholar 

  • 11.

    Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal–Organic Frameworks and Covalent Organic Frameworks (Wiley-VCH, 2019).

  • 12.

    Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(II) coordination sites. Science 335, 1606–1610 (2012).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Chen, K.-J. et al. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 366, 241–246 (2019).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    ADS  CAS  Article  Google Scholar 

  • 15.

    Wang, H. et al. Tailor-made microporous metal–organic frameworks for the full separation of propane from propylene through selective size exclusion. Adv. Mater. 30, 1805088 (2018).

    Article  Google Scholar 

  • 16.

    IHS. Natural gas liquids challenging oil as petrochemical feedstock in North America, increasing global demand for on-purpose production of propylene, IHS says. Business Wire https://www.businesswire.com/news/home/20140827005068/en/Natural-Gas-Liquids-Challenging-Oil-as-Petrochemical-Feedstock-in-North-America-Increasing-Global-Demand-for-On-purpose-Production-of-Propylene-IHS-Says (2014).

  • 17.

    Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).

    Article  Google Scholar 

  • 18.

    Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    ADS  Article  Google Scholar 

  • 19.

    Li, J.-R., Kuppler, R. J. & Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    CAS  Article  Google Scholar 

  • 20.

    Rege, S. U. & Yang, R. T. Propane/propylene separation by pressure swing adsorption: sorbent comparison and multiplicity of cyclic steady states. Chem. Eng. Sci. 57, 1139–1149 (2002).

    CAS  Article  Google Scholar 

  • 21.

    Papastathopoulou, H. S. & Luyben, W. L. Control of a binary sidestream distillation column. Ind. Eng. Chem. Res. 30, 705–713 (1991).

    CAS  Article  Google Scholar 

  • 22.

    Martins, V. F. D. et al. Development of gas phase SMB technology for light olefin/paraffin separations. AIChE J. 62, 2490–2500 (2016).

    CAS  Article  Google Scholar 

  • 23.

    Narin, G. et al. Light olefins/paraffins separation with 13X zeolite binderless beads. Separ. Purif. Tech. 133, 452–475 (2014).

    CAS  Article  Google Scholar 

  • 24.

    Chai, Y. et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations. Science 368, 1002–1006 (2020).

    CAS  Article  Google Scholar 

  • 25.

    Mohanty, S. & McCormick, A. V. Prospects for principles of size and shape selective separations using zeolites. Chem. Eng. J. 74, 1–14 (1999).

    CAS  Article  Google Scholar 

  • 26.

    Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Li, B. et al. An ideal molecular sieve for acetylene removal from ethylene with record selectivity and productivity. Adv. Mater. 29, 1704210 (2017).

    Article  Google Scholar 

  • 28.

    Hu, T. et al. Microporous metal–organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat. Commun. 6, 7328 (2015).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Ma, S., Sun, D., Wang, X.-S. & Zhou, H.-C. A mesh-adjustable molecular sieve for general use in gas separation. Angew. Chem. Int. Ed. 46, 2458–2462 (2007).

    CAS  Article  Google Scholar 

  • 30.

    Katsoulidis, A. P. et al. Chemical control of structure and guest uptake by a conformationally mobile porous material. Nature 565, 213–217 (2019).

    ADS  CAS  Article  Google Scholar 

  • 31.

    Gu, C. et al. Design and control of gas diffusion process in a nanoporous soft crystal. Science 363, 387–391 (2019).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Krokidas, P. et al. Molecular simulation studies of the diffusion of methane, ethane, propane, and propylene in ZIF-8. J. Phys. Chem. C 119, 27028–27037 (2015).

    CAS  Article  Google Scholar 

  • 33.

    Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  • 34.

    Lin, R. B. et al. Optimized separation of acetylene from carbon dioxide and ethylene in a microporous material. J. Am. Chem. Soc. 139, 8022–8028 (2017).

    CAS  Article  Google Scholar 

  • 35.

    Li, L. et al. Flexible robust metal–organic framework for efficient removal of propyne from propylene. J. Am. Chem. Soc. 139, 7733–7736 (2017).

    CAS  Article  Google Scholar 

  • 36.

    Wang, X. et al. Guest-dependent pressure induced gate-opening effect enables effective separation of propene and propane in a flexible MOF. Chem. Eng. J. 346, 489–496 (2018).

    CAS  Article  Google Scholar 

  • 37.

    Grande, C. A. & Rodrigues, A. E. Adsorption kinetics of propane and propylene in zeolite 4A. Chem. Eng. Res. Des. 82, 1604–1612 (2004).

    CAS  Article  Google Scholar 

  • 38.

    Khalighi, M., Karimi, I. A. & Farooq, S. Comparing SiCHA and 4A zeolite for propylene/propane separation using a surrogate-based simulation/optimization approach. Ind. Eng. Chem. Res. 53, 16973–16983 (2014).

    CAS  Article  Google Scholar 

  • 39.

    Liang, B. et al. An ultramicroporous metal–organic framework for high sieving separation of propylene from propane. J. Am. Chem. Soc. 142, 17795–17801 (2020).

    CAS  Article  Google Scholar 

  • 40.

    Myers, A. L. & Prausnitz, J. M. Thermodynamics of mixed-gas adsorption. AIChE J. 11, 121–127 (1965).

    CAS  Article  Google Scholar 

  • 41.

    Lee, C. Y. et al. Kinetic separation of propene and propane in metal organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. J. Am. Chem. Soc. 133, 5228–5231 (2011).

    CAS  Article  Google Scholar 

  • 42.

    Meyers, R. A. Handbook of Petrochemicals Production Processes (McGraw-Hill, 2005).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *