Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Parallelism of intestinal secretory IgA shapes functional microbial fitness

  • 1.

    Bunker, J. J. et al. Natural polyreactive IgA antibodies coat the intestinal microbiota. Science 358, eaan6619 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 2.

    Moor, K. et al. High-avidity IgA protects the intestine by enchaining growing bacteria. Nature 544, 498–502 (2017).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 3.

    Benckert, J. et al. The majority of intestinal IgA+ and IgG+ plasmablasts in the human gut are antigen-specific. J. Clin. Invest. 121, 1946–1955 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Di Niro, R. et al. Salmonella infection drives promiscuous B cell activation followed by extrafollicular affinity maturation. Immunity 43, 120–131 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 5.

    Sterlin, D. et al. Human IgA binds a diverse array of commensal bacteria. J. Exp. Med. 217, e20181635 (2020).

    PubMed  Article  CAS  Google Scholar 

  • 6.

    Okai, S. et al. High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice. Nat. Microbiol. 1, 16103 (2016).

    CAS  PubMed  Article  Google Scholar 

  • 7.

    Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Rollenske, T. et al. Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nat. Immunol. 19, 617–624 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 9.

    Yang, C., Chen-liaw, A., Moran, T. M., Cerutti, A. & Faith, J.J. Immunoglobulin A antibody composition is sculpted to bind the self gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.11.30.405332 (2020).

  • 10.

    Macpherson, A. J., Yilmaz, B., Limenitakis, J. P. & Ganal-Vonarburg, S. C. IgA function in relation to the intestinal microbiota. Annu. Rev. Immunol. 36, 359–381 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 11.

    Nowosad, C. R. et al. Tunable dynamics of B cell selection in gut germinal centres. Nature 588, 321–326 (2020).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 12.

    Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Peterson, D. A. et al. Characterizing the interactions between a naturally primed immunoglobulin A and its conserved Bacteroides thetaiotaomicron species-specific epitope in gnotobiotic mice. J. Biol. Chem. 290, 12630–12649 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 14.

    Lycke, N., Eriksen, L. & Holmgren, J. Protection against cholera toxin after oral immunization is thymus-dependent and associated with intestinal production of neutralizing IgA antitoxin. Scand. J. Immunol. 25, 413–419 (1987).

    CAS  PubMed  Article  Google Scholar 

  • 15.

    Pabst, O. & Slack, E. IgA and the intestinal microbiota: the importance of being specific. Mucosal Immunol. 13, 12–21 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 16.

    Nakajima, A. et al. IgA regulates the composition and metabolic function of gut microbiota by promoting symbiosis between bacteria. J. Exp. Med. 215, 2019–2034 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 17.

    Joglekar, P. et al. Intestinal IgA regulates expression of a fructan polysaccharide utilization locus in colonizing gut commensal Bacteroides thetaiotaomicron. Mbio 10, e02324–19 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 18.

    Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  • 19.

    Lindner, C. et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nat. Immunol. 16, 880–888 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 20.

    Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 21.

    Li, H. et al. Mucosal or systemic microbiota exposures shape the B cell repertoire. Nature 584, 274–278 (2020).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 22.

    Hendrickson, B. A. et al. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J. Exp. Med. 182, 1905–1911 (1995).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Johansen, F. et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190, 915–922 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015).

    CAS  PubMed  Article  Google Scholar 

  • 25.

    Liu, X. & Ferenci, T. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J. Bacteriol. 180, 3917–3922 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Yu, F. & Mizushima, S. Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J. Bacteriol. 151, 718–722 (1982).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 27.

    Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 28.

    Mouquet, H. & Nussenzweig, M. C. Polyreactive antibodies in adaptive immune responses to viruses. Cell. Mol. Life Sci. 69, 1435–1445 (2011).

    PubMed  Article  CAS  Google Scholar 

  • 29.

    Guthmiller, J. J. et al. Polyreactive broadly neutralizing B cells are selected to provide defense against pandemic threat influenza viruses. Immunity 53, 1230–1244 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 30.

    Kabbert, J. et al. High microbiota reactivity of adult human intestinal IgA requires somatic mutations. J. Exp. Med. 217, e20200275 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 31.

    Wold, A. E. et al. Secretory immunoglobulin A carries oligosaccharide receptors for Escherichia coli type 1 fimbrial lectin. Infect. Immun. 58, 3073–3077 (1990).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 32.

    Stern, R. J. et al. Conversion of dTDP-4-keto-6-deoxyglucose to free dTDP-4-keto-rhamnose by the rmlC gene products of Escherichia coli and Mycobacterium tuberculosis. Microbiology 145, 663–671 (1999).

    CAS  PubMed  Article  Google Scholar 

  • 33.

    Weiss, G. L. et al. Architecture and function of human uromodulin filaments in urinary tract infections. Science 1010, 1005–1010 (2020).

    Article  ADS  CAS  Google Scholar 

  • 34.

    Baba, T. et al. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 35.

    Meuskens, I., Michalik, M., Chauhan, N., Linke, D. & Leo, J. C. A new strain collection for improved expression of outer membrane proteins. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2017.00464 (2017).

  • 36.

    Tran, Q.-T. et al. Structure–kinetic relationship of carbapenem antibacterials permeating through E. coli OmpC porin. Proteins 82, 2998–3012 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 37.

    Lukasiewicz, J. et al. Serological characterization of anti-endotoxin serum directed against the conjugate of oligosaccharide core of Escherichia coli type R4 with tetanus toxoid. FEMS Immunol. Med. Microbiol. 37, 59–67 (2003).

    CAS  PubMed  Article  Google Scholar 

  • 38.

    Keegan, N., Ridley, H. & Lakey, J. H. Discovery of biphasic thermal unfolding of OmpC with implications for surface loop stability. Biochemistry 49, 9715–9721 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 39.

    Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Chen, J. et al. Immunoglobulin gene rearrangement in B cell deficient mice generated by targeted deletion of the JH locus. Int. Immunol. 5, 647–656 (1993).

    CAS  PubMed  Article  Google Scholar 

  • 41.

    Meffre, E. et al. Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J. Exp. Med. 199, 145–150 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Ofek, I., Mirelman, D. & Sharon, N. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265, 623–625 (1977).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 43.

    Busse, C. E., Czogiel, I., Braun, P., Arndt, P. F. & Wardemann, H. Single-cell based high-throughput sequencing of full-length immunoglobulin heavy and light chain genes. Eur. J. Immunol. 44, 597–603 (2014).

    CAS  PubMed  Article  Google Scholar 

  • 44.

    Tiller, T., Busse, C. E. & Wardemann, H. Cloning and expression of murine Ig genes from single B cells. J. Immunol. Methods 350, 183–193 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 45.

    Li, H. et al. The outer mucus layer hosts a distinct intestinal microbial niche. Nat. Commun. 6, 8292 (2015).

    CAS  PubMed  Article  ADS  Google Scholar 

  • 46.

    Urdaneta, V. & Casadesús, J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front. Med. https://doi.org/10.3389/fmed.2017.00163 (2017).

  • 47.

    Imkeller, K., Arndt, P. F., Wardemann, H. & Busse, C. E. sciReptor: analysis of single-cell level immunoglobulin repertoires. BMC Bioinform. 17, 67 (2016).

    Article  CAS  Google Scholar 

  • 48.

    Keseler, I. M. et al. The EcoCyc database: reflecting new knowledge about Escherichia coli K-12. Nucleic Acids Res. 45, D543–D550 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top