Skin cells undergo asynthetic fission to expand body surfaces in zebrafish

  • Tai, K., Cockburn, K. & Greco, V. Flexibility sustains epithelial tissue homeostasis. Curr. Opin. Cell Biol. 60, 84–91 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Dekoninck, S. et al. Defining the design principles of skin epidermis postnatal growth. Cell 181, 604–620 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Gonzales, K. A. U. & Fuchs, E. Skin and its regenerative powers: an alliance between stem cells and their niche. Dev. Cell 43, 387–401 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Lee, R. T., Asharani, P. V. & Carney, T. J. Basal keratinocytes contribute to all strata of the adult zebrafish epidermis. PLoS ONE 9, e84858 (2014).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Rakers, S. et al. Antimicrobial peptides (AMPs) from fish epidermis: perspectives for investigative dermatology. J. Invest. Dermatol. 133, 1140–1149 (2013).

    CAS  PubMed  Article  Google Scholar 

  • Jones, K. B. et al. Quantitative clonal analysis and single-cell transcriptomics reveal division kinetics, hierarchy, and fate of oral epithelial progenitor cells. Cell Stem Cell 24, 183–192 (2019).

    CAS  PubMed  Article  Google Scholar 

  • Jones, K. B. & Klein, O. D. Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey. Int. J. Oral Sci. 5, 121–129 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen, C. H. et al. Multicolor cell barcoding technology for long-term surveillance of epithelial regeneration in zebrafish. Dev. Cell 36, 668–680 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Loulier, K. et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron 81, 505–520 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Lam, P. Y., Mangos, S., Green, J. M., Reiser, J. & Huttenlocher, A. In vivo imaging and characterization of actin microridges. PLoS ONE 10, e0115639 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • van Loon, A. P., Erofeev, I. S., Maryshev, I. V., Goryachev, A. B. & Sagasti, A. Cortical contraction drives the 3D patterning of epithelial cell surfaces. J. Cell Biol. 219, e201904144 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Guzman, A., Ramos-Balderas, J. L., Carrillo-Rosas, S. & Maldonado, E. A stem cell proliferation burst forms new layers of p63 expressing suprabasal cells during zebrafish postembryonic epidermal development. Biol. Open 2, 1179–1186 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Slanchev, K. et al. The epithelial cell adhesion molecule EpCAM is required for epithelial morphogenesis and integrity during zebrafish epiboly and skin development. PLoS Genet. 5, e1000563 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Richardson, R. J. et al. Periderm prevents pathological epithelial adhesions during embryogenesis. J. Clin. Invest. 124, 3891–3900 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wyatt, T. P. et al. Emergence of homeostatic epithelial packing and stress dissipation through divisions oriented along the long cell axis. Proc. Natl Acad. Sci. USA 112, 5726–5731 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chen, C. F. et al. Establishment of a transgenic zebrafish line for superficial skin ablation and functional validation of apoptosis modulators in vivo. PLoS ONE 6, e20654 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Roan, H. Y., Tseng, T. L. & Chen, C. H. Whole-body clonal mapping identifies giant dominant clones in zebrafish skin epidermis. Development 148, dev199669 (2021).

    CAS  PubMed  Article  Google Scholar 

  • Gillooly, J. F., Hein, A. & Damiani, R. Nuclear DNA content varies with cell size across human cell types. Cold Spring Harb. Perspect. Biol. 7, a019091 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • Ben-David, U. & Amon, A. Context is everything: aneuploidy in cancer. Nat. Rev. Genet. 21, 44–62 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Fox, D. T. & Duronio, R. J. Endoreplication and polyploidy: insights into development and disease. Development 140, 3–12 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Wills, A. A., Holdway, J. E., Major, R. J. & Poss, K. D. Regulated addition of new myocardial and epicardial cells fosters homeostatic cardiac growth and maintenance in adult zebrafish. Development 135, 183–192 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Kawakami, A., Fukazawa, T. & Takeda, H. Early fin primordia of zebrafish larvae regenerate by a similar growth control mechanism with adult regeneration. Dev. Dyn. 231, 693–699 (2004).

    PubMed  Article  Google Scholar 

  • Mateus, R. et al. In vivo cell and tissue dynamics underlying zebrafish fin fold regeneration. PLoS ONE 7, e51766 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hunter, G. L., Crawford, J. M., Genkins, J. Z. & Kiehart, D. P. Ion channels contribute to the regulation of cell sheet forces during Drosophila dorsal closure. Development 141, 325–334 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Yang, X. C. & Sachs, F. Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243, 1068–1071 (1989).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Eisenhoffer, G. T. et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484, 546–549 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Syeda, R. et al. Chemical activation of the mechanotransduction channel Piezo1. eLife 4, e07369 (2015).

    PubMed Central  Article  Google Scholar 

  • Botello-Smith, W. M. et al. A mechanism for the activation of the mechanosensitive Piezo1 channel by the small molecule Yoda1. Nat. Commun. 10, 4503 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Gudipaty, S. A. et al. Mechanical stretch triggers rapid epithelial cell division through Piezo1. Nature 543, 118–121 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • von Mohl, H. Vermischte Schriften Botanischen Inhalts (Bei Ludwig Friedrich Fues, 1845).

  • Newport, J. & Dasso, M. On the coupling between DNA replication and mitosis. J. Cell Sci. Suppl. 12, 149–160 (1989).

    CAS  PubMed  Article  Google Scholar 

  • Raff, J. W. & Glover, D. M. Nuclear and cytoplasmic mitotic cycles continue in Drosophila embryos in which DNA synthesis is inhibited with aphidicolin. J. Cell Biol. 107, 2009–2019 (1988).

    CAS  PubMed  Article  Google Scholar 

  • Ganier, O. et al. Mitosis without DNA replication in mammalian somatic cells. Preprint at bioRxiv https://doi.org/10.1101/2020.07.08.193607 (2020).

  • Ellefsen, K. L. et al. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca2+ flickers. Commun. Biol. 2, 298 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lopez-Gay, J. M. et al. Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science 370, eabb2169 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Byrd, K. M. et al. Heterogeneity within stratified epithelial stem cell populations maintains the oral mucosa in response to physiological stress. Cell Stem Cell 25, 814–829 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zhang, Y. et al. Development and stem cells of the esophagus. Semin. Cell Dev. Biol. 66, 25–35 (2017).

    CAS  PubMed  Article  Google Scholar 

  • Mosimann, C. et al. Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169–177 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Rembold, M., Lahiri, K., Foulkes, N. S. & Wittbrodt, J. Transgenesis in fish: efficient selection of transgenic fish by co-injection with a fluorescent reporter construct. Nat. Protoc. 1, 1133–1139 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Ju, B. et al. Faithful expression of green fluorescent protein (GFP) in transgenic zebrafish embryos under control of zebrafish gene promoters. Dev. Genet. 25, 158–167 (1999).

    CAS  PubMed  Article  Google Scholar 

  • Zhang, J. et al. Visualization of caspase-3-like activity in cells using a genetically encoded fluorescent biosensor activated by protein cleavage. Nat. Commun. 4, 2157 (2013).

    ADS  PubMed  Article  CAS  Google Scholar 

  • Wang, Y. T. et al. Genetic reprogramming of positional memory in a regenerating appendage. Curr. Biol. 29, 4193–4207 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Triemer, T. et al. Superresolution imaging of individual replication forks reveals unexpected prodrug resistance mechanism. Proc. Natl Acad. Sci. USA 115, E1366–E1373 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Colanesi, S. et al. Small molecule screening identifies targetable zebrafish pigmentation pathways. Pigment Cell Melanoma Res. 25, 131–143 (2012).

    CAS  PubMed  Article  Google Scholar 

  • Poss, K. D., Nechiporuk, A., Stringer, K. F., Lee, C. & Keating, M. T. Germ cell aneuploidy in zebrafish with mutations in the mitotic checkpoint gene mps1. Genes Dev. 18, 1527–1532 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tseng, T. L. et al. The RNA helicase Ddx52 functions as a growth switch in juvenile zebrafish. Development 148, dev199578 (2021).

    CAS  PubMed  Article  Google Scholar 

  • Talbot, J. C. & Amacher, S. L. A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles. Zebrafish 11, 583–585 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • Bresciani, E., Broadbridge, E. & Liu, P. P. An efficient dissociation protocol for generation of single cell suspension from zebrafish embryos and larvae. MethodsX 5, 1287–1290 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  • van Ham, T. J., Mapes, J., Kokel, D. & Peterson, R. T. Live imaging of apoptotic cells in zebrafish. FASEB J. 24, 4336–4342 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Achanta, R. et al. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012).

    PubMed  Article  Google Scholar 

  • Lloyd, S. Least squares quantization in PCM. IEEE Trans. Inform. Theory 28, 129–137 (1982).

    MathSciNet  MATH  Article  Google Scholar 

  • MacQueen, J. in Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability Vol. 1, 281–297 (Univ. California Press, 1967).

  • Lowe, D. G. in Proc. 7th IEEE International Conference on Computer Vision Vol. 1152, 1150–1157 (IEEE, 1999).

  • Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004).

    Article  Google Scholar 

  • Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

    CAS  PubMed  Google Scholar 

  • Tschumperle, D. & Deriche, R. Vector-valued image regularization with PDEs: a common framework for different applications. IEEE Trans. Pattern Anal. 27, 506–517 (2005).

    CAS  Article  Google Scholar 

  • Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695–702 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    MathSciNet  CAS  PubMed  Article  Google Scholar 

  • van der Walt, S. et al. scikit-image: image processing in Python. PeerJ 2, e453 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  • Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybernet. 9, 62–66 (1979).

    Article  Google Scholar 

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: