Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Structural basis of cytokine-mediated activation of ALK family receptors

  • 1.

    Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263, 1281–1284 (1994).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 2.

    Ben-Neriah, Y. & Bauskin, A. R. Leukocytes express a novel gene encoding a putative transmembrane protein-kinase devoid of an extracellular domain. Nature 333, 672–676 (1988).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 3.

    Zhang, H. et al. Deorphanization of the human leukocyte tyrosine kinase (LTK) receptor by a signaling screen of the extracellular proteome. Proc. Natl Acad. Sci. USA 111, 15741–15745 (2014).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 4.

    Reshetnyak, A. V. et al. Augmentor α and β (FAM150) are ligands of the receptor tyrosine kinases ALK and LTK: Hierarchy and specificity of ligand-receptor interactions. Proc. Natl Acad. Sci. USA 112, 15862–15867 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Guan, J. et al. FAM150A and FAM150B are activating ligands for anaplastic lymphoma kinase. eLife 4, e09811 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 6.

    Reshetnyak, A. V. et al. Identification of a biologically active fragment of ALK and LTK-ligand 2 (augmentor-α). Proc. Natl Acad. Sci. USA 115, 8340–8345 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 7.

    Hallberg, B. & Palmer, R. H. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology. Nat. Rev. Cancer 13, 685–700 (2013).

    CAS  PubMed  Article  Google Scholar 

  • 8.

    Janostiak, R., Malvi, P. & Wajapeyee, N. Anaplastic lymphoma kinase confers resistance to BRAF kinase inhibitors in melanoma. iScience 16, 453–467 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Javanmardi, N. et al. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 59, 50–57 (2020).

    CAS  Article  Google Scholar 

  • 10.

    Li, N. et al. Gain-of-function polymorphism in mouse and human Ltk: implications for the pathogenesis of systemic lupus erythematosus. Hum. Mol. Genet. 13, 171–179 (2004).

    PubMed  Article  Google Scholar 

  • 11.

    Orthofer, M. et al. Identification of ALK in thinness. Cell 181, 1246–1262.e22 (2020).

    CAS  PubMed  Article  Google Scholar 

  • 12.

    Pospisilik, J. A. et al. Drosophila genome-wide obesity screen reveals Hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148–160 (2010).

    CAS  PubMed  Article  Google Scholar 

  • 13.

    Borenäs, M. et al. ALK ligand ALKAL2 potentiates MYCN‐driven neuroblastoma in the absence of ALK mutation. EMBO J. 40, e105784 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Sano, R. et al. An antibody-drug conjugate directed to the ALK receptor demonstrates efficacy in preclinical models of neuroblastoma. Sci. Transl. Med. 11, eaau9732 (2019).

    PubMed  Article  CAS  Google Scholar 

  • 15.

    Dornburg, A. et al. Comparative genomics within and across bilaterians illuminates the evolutionary history of ALK and LTK proto-oncogene origination and diversification. Genome Biol. Evol. 13, evaa228 (2021).

    PubMed  Article  CAS  Google Scholar 

  • 16.

    Murray, P. B. et al. Heparin is an activating ligand of the orphan receptor tyrosine kinase ALK. Sci. Signal. 8, ra6 (2015).

    PubMed  Article  CAS  Google Scholar 

  • 17.

    Alvarado, D. et al. Anti-ALK antibodies and methods for use thereof. US patent 15/755421 (2021).

  • 18.

    Crick, F. H. C. & Rich, A. Structure of polyglycine II. Nature 176, 780–781 (1955).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 19.

    Lorén, C. E. et al. A crucial role for the anaplastic lymphoma kinase receptor tyrosine kinase in gut development in Drosophila melanogaster. EMBO Rep. 4, 781–786 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 20.

    Kolodny, R. Searching protein space for ancient sub-domain segments. Curr. Opin. Struct. Biol. 68, 105–112 (2021).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Fadeev, A. et al. ALKALs are in vivo ligands for ALK family receptor tyrosine kinases in the neural crest and derived cells. Proc. Natl Acad. Sci. USA 115, E630–E638 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 22.

    Wang, Y. W. et al. Identification of oncogenic point mutations and hyperphosphorylation of anaplastic lymphoma kinase in lung cancer. Neoplasia 13, 704–715 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 23.

    Maxson, J. E. et al. Therapeutically targetable ALK mutations in leukemia. Cancer Res. 75, 2146–2150 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 24.

    Durham, B. H. et al. Activating mutations in CSF1R and additional receptor tyrosine kinases in histiocytic neoplasms. Nat. Med. 25, 1839–1842 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 25.

    Malinauskas, T., Aricescu, A. R., Lu, W., Siebold, C. & Jones, E. Y. Modular mechanism of Wnt signaling inhibition by Wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 18, 886–893 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Wehrman, T. et al. Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Ogiso, H. et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110, 775–787 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Elegheert, J. et al. Extracellular complexes of the hematopoietic human and mouse CSF-1 receptor are driven by common assembly principles. Structure 19, 1762–1772 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 29.

    Schlessinger, J. et al. Crystal structure of a ternary FGF–FGFR–heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6, 743–750 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 30.

    Uchikawa, E., Choi, E., Shang, G., Yu, H. & Xiao-Chen, B. Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. eLife 8, e48630 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Aricescu, A. R., Lu, W. & Jones, E. Y. A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr. D 62, 1243–1250 (2006).

    PubMed  Article  CAS  Google Scholar 

  • 32.

    Reeves, P. J., Callewaert, N., Contreras, R. & Khorana, H. G. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc. Natl Acad. Sci. USA 99, 13419–13424 (2002).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Backliwal, G. et al. Valproic acid: A viable alternative to sodium butyrate for enhancing protein expression in mammalian cell cultures. Biotechnol. Bioeng. 101, 182–189 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 34.

    Gorrec, F. The MORPHEUS II protein crystallization screen. Acta Crystallogr. F 71, 831–837 (2015).

    CAS  Article  Google Scholar 

  • 35.

    Kabsch, W. XDS. Acta Crystallogr. D. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 36.

    McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Bricogne G., et al. BUSTER 2.11.2 (United Kingdom Global Phasing Ltd, 2017).

  • 38.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Terwilliger, T. C. Maximum-likelihood density modification. Acta Crystallogr. D 56, 965–972 (2000).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. Sect. D 75, 861–877 (2019).

    CAS  Article  Google Scholar 

  • 41.

    Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 42.

    Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    D’Arcy, A., Villard, F. & Marsh, M. An automated microseed matrix-screening method for protein crystallization. Acta Crystallogr. D 63, 550–554 (2007).

    PubMed  Article  CAS  Google Scholar 

  • 44.

    Strong, M. et al. Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 103, 8060–8065 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Howarth, M. & Ting, A. Y. Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3, 534–545 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Hopkins, J. B., Gillilan, R. E. & Skou, S. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J. Appl. Crystallogr. 50, 1545–1553 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Biasini, M. et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 42, W252 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Webb, B. & Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma. 2016, 5.6.1–5.6.37 (2016).

    Google Scholar 

  • 49.

    Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Ishihara, T. et al. HEN-1, a secretory protein with an LDL receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 109, 639–649 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 51.

    Englund, C. et al. Jeb signals through the Alk receptor tyrosine kinase to drive visceral muscle fusion. Nature 425, 512–516 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 52.

    Lee, H. H., Norris, A., Weiss, J. B. & Frasch, M. Jelly belly protein activates the receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature 425, 507–512 (2003).

    ADS  CAS  PubMed  Article  Google Scholar 

  • 53.

    Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).

    CAS  PubMed  Article  Google Scholar 

  • 54.

    Pentelute, B. L. et al. X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J. Am. Chem. Soc. 130, 9695–9701 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 55.

    Buglino, J., Shen, V., Hakimian, P. & Lima, C. D. Structural and biochemical analysis of the Obg GTP binding protein. Structure 10, 1581–1592 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Weidenweber, S. et al. Structure of the acetophenone carboxylase core complex: Prototype of a new class of ATP-dependent carboxylases/hydrolases. Sci. Rep. 7, 1–10 (2017).

    Article  CAS  Google Scholar 

  • 57.

    Dunne, M. et al. Salmonella phage S16 tail fiber adhesin features a rare polyglycine rich domain for host recognition. Structure 26, 1573–1582.e4 (2018).

    CAS  PubMed  Article  Google Scholar 

  • 58.

    Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60, 2256–2268 (2004).

    CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top