Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Structural basis of human separase regulation by securin and CDK1–cyclin B1

  • 1.

    Gruber, S., Haering, C. H. & Nasmyth, K. Chromosomal cohesin forms a ring. Cell 112, 765–777 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375–386 (2000).

    CAS  Article  Google Scholar 

  • 3.

    Hauf, S., Waizenegger, I. C. & Peters, J. M. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293, 1320–1323 (2001).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Waizenegger, I. C., Hauf, S., Meinke, A. & Peters, J. M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103, 399–410 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Ciosk, R. et al. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 1067–1076 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 6.

    Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715–726 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Boland, A. et al. Cryo-EM structure of a metazoan separase-securin complex at near-atomic resolution. Nat. Struct. Mol. Biol. 24, 414–418 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Luo, S. & Tong, L. Molecular mechanism for the regulation of yeast separase by securin. Nature 542, 255–259 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 9.

    Gorr, I. H. et al. Essential CDK1-inhibitory role for separase during meiosis I in vertebrate oocytes. Nat. Cell Biol. 8, 1035–1037 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 10.

    Gorr, I. H., Boos, D. & Stemmann, O. Mutual inhibition of separase and Cdk1 by two-step complex formation. Mol. Cell 19, 135–141 (2005).

    CAS  Article  Google Scholar 

  • 11.

    Santaguida, S. & Amon, A. Short- and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16, 473–485 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 12.

    Kamenz, J. & Hauf, S. Time to split up: dynamics of chromosome separation. Trends Cell Biol. 27, 42–54 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 13.

    Rosen, L. E. et al. Cohesin cleavage by separase is enhanced by a substrate motif distinct from the cleavage site. Nat. Commun. 10, 5189 (2019).

    ADS  PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 14.

    Zou, H., McGarry, T. J., Bernal, T. & Kirschner, M. W. Identification of a vertebrate sister-chromatid separation inhibitor involved in transformation and tumorigenesis. Science 285, 418–422 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 15.

    Li, J., Ouyang, Y. C., Zhang, C. H., Qian, W. P. & Sun, Q. Y. The cyclin B2/CDK1 complex inhibits separase activity in mouse oocyte meiosis I. Development 146, dev182519 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Hellmuth, S., Gómez-H, L., Pendás, A. M. & Stemmann, O. Securin-independent regulation of separase by checkpoint-induced shugoshin–MAD2. Nature 580, 536–541 (2020).

    ADS  CAS  Article  Google Scholar 

  • 17.

    Hellmuth, S. et al. Human chromosome segregation involves multi-layered regulation of separase by the peptidyl-prolyl-isomerase Pin1. Mol. Cell 58, 495–506 (2015).

    CAS  Article  Google Scholar 

  • 18.

    Shindo, N., Kumada, K. & Hirota, T. Separase sensor reveals dual roles for separase coordinating cohesin cleavage and cdk1 inhibition. Dev. Cell 23, 112–123 (2012).

    CAS  Article  Google Scholar 

  • 19.

    Lin, Z., Luo, X. & Yu, H. Structural basis of cohesin cleavage by separase. Nature 532, 131–134 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 20.

    Sullivan, M., Hornig, N. C. D., Porstmann, T. & Uhlmann, F. Studies on substrate recognition by the budding yeast separase. J. Biol. Chem. 279, 1191–1196 (2004).

    CAS  PubMed  Article  Google Scholar 

  • 21.

    Nagao, K. & Yanagida, M. Securin can have a separase cleavage site by substitution mutations in the domain required for stabilization and inhibition of separase. Genes Cells 11, 247–260 (2006).

    CAS  Article  Google Scholar 

  • 22.

    Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M. A. & Nasmyth, K. Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459–472 (2001).

    CAS  PubMed  Article  Google Scholar 

  • 23.

    Boos, D., Kuffer, C., Lenobel, R., Körner, R. & Stemmann, O. Phosphorylation-dependent binding of cyclin B1 to a Cdc6-like domain of human separase. J. Biol. Chem. 283, 816–823 (2008).

    CAS  PubMed  Article  Google Scholar 

  • 24.

    Kõivomägi, M. et al. Multisite phosphorylation networks as signal processors for Cdk1. Nat. Struct. Mol. Biol. 20, 1415–1424 (2013).

    PubMed  Article  CAS  Google Scholar 

  • 25.

    McGrath, D. A. et al. Cks confers specificity to phosphorylation-dependent CDK signaling pathways. Nat. Struct. Mol. Biol. 20, 1407–1414 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 26.

    Holland, A. J., Böttger, F., Stemmann, O. & Taylor, S. S. Protein phosphatase 2A and separase form a complex regulated by separase autocleavage. J. Biol. Chem. 282, 24623–24632 (2007).

    CAS  PubMed  Article  Google Scholar 

  • 27.

    Zou, H., Stemman, O., Anderson, J. S., Mann, M. & Kirschner, M. W. Anaphase specific auto-cleavage of separase. FEBS Lett. 528, 246–250 (2002).

    CAS  PubMed  Article  Google Scholar 

  • 28.

    Luo, S. & Tong, L. in Macromolecular Protein Complexes III: Structure and Function. (eds. Harris, J. R. & Marles-Wright, J.) 217–232 (Springer, 2021).

  • 29.

    Bachmann, G. et al. A closed conformation of the Caenorhabditis elegans separase-securin complex. Open Biol. 6, 160032 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 30.

    Dephoure, N. et al. A quantitative atlas of mitotic phosphorylation. Proc. Natl Acad. Sci. USA 105, 10762–10767 (2008).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 31.

    Cheng, K. Y. et al. The role of the phospho-CDK2/cyclin A recruitment site in substrate recognition. J. Biol. Chem. 281, 23167–23179 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 32.

    Russo, A. A., Jeffrey, P. D., Patten, A. K., Massagué, J. & Pavletich, N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331 (1996).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 33.

    Melesse, M., Bembenek, J. N. & Zhulin, I. B. Conservation of the separase regulatory domain. Biol. Direct 13, 7 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 34.

    Goda, T., Ishii, T., Nakajo, N., Sagata, N. & Kobayashi, H. The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B-Cdc2 complex. J. Biol. Chem. 278, 19032–19037 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 35.

    Zhang, Z., Yang, J. & Barford, D. Recombinant expression and reconstitution of multiprotein complexes by the USER cloning method in the insect cell-baculovirus expression system. Methods 95, 13–25 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    Zhang, S. et al. Molecular mechanism of APC/C activation by mitotic phosphorylation. Nature 533, 260–264 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 37.

    Martin, T. G., Boland, A., Fitzpatrick, A. W. P. & Scheres, S. H. W. Graphene Oxide Grid Preparation. https://figshare.com/articles/Graphene_Oxide_Grid_Preparation/3178669 (2016).

  • 38.

    Stabrin, M. et al. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM. Nat. Commun. 11, 5716 (2020).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 40.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 41.

    Wagner, T. et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 42.

    Yang, Z., Fang, J., Chittuluru, J., Asturias, F. J. & Penczek, P. A. Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20, 237–247 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Wilkinson, M. E., Kumar, A. & Casañal, A. Methods for merging data sets in electron cryo-microscopy. Acta Crystallogr. D 75, 782–791 (2019).

    CAS  Article  Google Scholar 

  • 44.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 45.

    Bepler, T. et al. Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1153–1160 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 46.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 47.

    Sanchez-Garcia, R. et al. DeepEMhancer: a deep learning solution for cryo-EM volume post-processing. Preprint at https://doi.org/10.1101/2020.06.12.148296 (2020).

  • 48.

    Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63–65 (2014).

    CAS  Article  Google Scholar 

  • 49.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 50.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 51.

    Brown, N. R. et al. CDK1 structures reveal conserved and unique features of the essential cell cycle CDK. Nat. Commun. 6, 6769 (2015).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 52.

    Topf, M. et al. Protein structure fitting and refinement guided by cryo-EM density. Structure 16, 295–307 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 53.

    Afonine, P. V. et al. New tools for the analysis and validation of cryo-EM maps and atomic models. Acta Crystallogr. D 74, 814–840 (2018).

    CAS  Article  Google Scholar 

  • 54.

    Williams, C. J. et al. MolProbity: More and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS  Article  Google Scholar 

  • 55.

    Yang, Z. et al. UCSF Chimera, MODELLER, and IMP: an integrated modeling system. J. Struct. Biol. 179, 269–278 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 56.

    Goddard, T. D. et al. UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci. 27, 14–25 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top