Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Synthesis of paracrystalline diamond

  • 1.

    Zallen, R. The Physics of Amorphous Solids (Wiley, 1983).

  • 2.

    Zachariasen, W. H. The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932).

    CAS  Google Scholar 

  • 3.

    Elliott, S. R. A continuous random network approach to the structure of vitreous boron trioxide. Philos. Mag. B 37, 435–446 (1978).

    CAS  Google Scholar 

  • 4.

    Elliott, S. R. Medium-range structural order in covalent amorphous solids. Nature 354, 445–452 (1991).

    CAS  Google Scholar 

  • 5.

    Sheng, H. W., Luo, W. K., Alamgir, F. M., Bai, J. M. & Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006).

    CAS  PubMed  Google Scholar 

  • 6.

    Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    CAS  PubMed  Google Scholar 

  • 7.

    Hirata, A. et al. Direct observation of local atomic order in a metallic glass. Nat. Mater. 10, 28–33 (2011).

    CAS  PubMed  Google Scholar 

  • 8.

    Hirai, H., Kondo, K., Yoshizawa, N. & Shiraishi, M. Amorphous diamond from C60 fullerene. Appl. Phys. Lett. 64, 1797–1799 (1994).

    CAS  Google Scholar 

  • 9.

    Zeng, Z. et al. Synthesis of quenchable amorphous diamond. Nat. Commun. 8, 322 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 10.

    Lin, Y. et al. Amorphous diamond: a high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).

    PubMed  Google Scholar 

  • 11.

    Treacy, M. M. J. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    CAS  PubMed  Google Scholar 

  • 12.

    Leocmach, M. & Tanaka, H. Roles of icosahedral and crystal-like order in the hard spheres glass transition. Nat. Commun. 3 (2012).

  • 13.

    Gibson, J. M., Treacy, M. M. J., Sun, T. & Zaluzec, N. J. Substantial crystalline topology in amorphous silicon. Phys. Rev. Lett. 105 (2010).

  • 14.

    Oganov, A. R., Hemley, R. J., Hazen, R. M. & Jones, A. P. Structure, bonding, and mineralogy of carbon at extreme conditions. Rev. Mineral. Geochem. 75, 47–77 (2013).

    CAS  Google Scholar 

  • 15.

    Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015).

    CAS  PubMed  Google Scholar 

  • 16.

    Németh, P. et al. Complex nanostructures in diamond. Nat. Mater. 19, 1126–1131 (2020).

    PubMed  Google Scholar 

  • 17.

    Sarac, B. et al. Origin of large plasticity and multiscale effects in iron-based metallic glasses. Nat. Commun. 9 (2018).

  • 18.

    Hwang, J. et al. Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. Phys. Rev. Lett. 108 (2012).

  • 19.

    Voyles, P. M. et al. Structure and physical properties of paracrystalline atomistic models of amorphous silicon. J. Appl. Phys. 90, 4437–4451 (2001).

    CAS  Google Scholar 

  • 20.

    Robertson, J. Diamond-like amorphous carbon. Mater. Sci. Eng. R Rep. 37, 129–281 (2002).

    Google Scholar 

  • 21.

    Ishii, T., Liu, Z. & Katsura, T. A breakthrough in pressure generation by a Kawai-type multi-anvil apparatus with tungsten carbide anvils. Engineering 5, 434–440 (2019).

    CAS  Google Scholar 

  • 22.

    Iwasa, Y. et al. New phases of C60 synthesized at high pressure. Science 264, 1570–1572 (1994).

    CAS  PubMed  Google Scholar 

  • 23.

    Blank, V. D. et al. Phase transformations in solid C60 at high-pressure-high-temperature treatment and the structure of 3D polymerized fullerites. Phys. Lett. A 220, 149–157 (1996).

    CAS  Google Scholar 

  • 24.

    Zhang, S. et al. Discovery of carbon-based strongest and hardest amorphous material. Preprint at https://arxiv.org/abs/2011.14819 (2020).

  • 25.

    Yamanaka, S. et al. Electron conductive three-dimensional polymer of cuboidal C60. Phys. Rev. Lett. 96, 076602 (2006).

    PubMed  Google Scholar 

  • 26.

    Sundqvist, B. Carbon under pressure. Phys. Rep. 909, 1–73 (2021).

    CAS  Google Scholar 

  • 27.

    Ferrari, A. C. & Robertson, J. Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 362, 2477–2512 (2004).

    CAS  Google Scholar 

  • 28.

    Daniels, H., Brydson, R., Rand, B. & Brown, A. Investigating carbonization and graphitization using electron energy loss spectroscopy (EELS) in the transmission electron microscope (TEM). Philos. Mag. 87, 4073–4092 (2007).

    CAS  Google Scholar 

  • 29.

    Chen, L. J. et al. Structural evolution in amorphous silicon and germanium thin films. Microsc. Microanal. 8, 268–273 (2002).

    CAS  PubMed  Google Scholar 

  • 30.

    Wang, Q. et al. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions. Sci. Rep. 4 (2014).

  • 31.

    Tang, H. et al. Revealing the formation mechanism of ultrahard nanotwinned diamond from onion carbon. Carbon 129, 159–167 (2018).

    CAS  Google Scholar 

  • 32.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  MATH  Google Scholar 

  • 33.

    Zhu, S.-c., Yan, X.-z., Liu, J., Oganov, A. R. & Zhu, Q. A revisited mechanism of the graphite-to-diamond transition at high temperature. Matter 3, 864–878 (2020).

    Google Scholar 

  • 34.

    Marchi, M. & Ballone, P. Adiabatic bias molecular dynamics: a method to navigate the conformational space of complex molecular systems. J. Chem. Phys. 110, 3697–3702 (1999).

    CAS  Google Scholar 

  • 35.

    Lee, L. L. Molecular Thermodynamics of Electrolyte Solutions (World Scientific, 2008).

  • 36.

    Sheng, H. W. et al. Polyamorphism in a metallic glass. Nat. Mater. 6, 192–197 (2007).

    CAS  PubMed  Google Scholar 

  • 37.

    Faken, D. & Jónsson, H. Systematic analysis of local atomic structure combined with 3D computer graphics. Comput. Mater. Sci. 2, 279–286 (1994).

    CAS  Google Scholar 

  • 38.

    Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).

    PubMed  Google Scholar 

  • 39.

    Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    CAS  PubMed  Google Scholar 

  • 40.

    Dubrovinskaia, N., Dubrovinsky, L., Langenhorst, F., Jacobsen, S. & Liebske, C. Nanocrystalline diamond synthesized from C60. Diam. Relat. Mater. 14, 16–22 (2005).

    CAS  Google Scholar 

  • 41.

    Sumiya, H. & Irifune, T. Hardness and deformation microstructures of nano-polycrystalline diamonds synthesized from various carbons under high pressure and high temperature. J. Mater. Res. 22, 2345–2351 (2007).

    CAS  Google Scholar 

  • 42.

    Huang, Q. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 510, 250–253 (2014).

    CAS  PubMed  Google Scholar 

  • 43.

    Tang, H. et al. Synthesis of nano-polycrystalline diamond in proximity to industrial conditions. Carbon 108, 1–6 (2016).

    CAS  Google Scholar 

  • 44.

    Hujo, W., Shadrack Jabes, B., Rana, V. K., Chakravarty, C. & Molinero, V. The rise and fall of anomalies in tetrahedral liquids. J. Stat. Phys. 145, 293–312 (2011).

    CAS  MATH  Google Scholar 

  • 45.

    Merlen, A. et al. High pressure–high temperature synthesis of diamond from single-wall pristine and iodine doped carbon nanotube bundles. Carbon 47, 1643–1651 (2009).

    CAS  Google Scholar 

  • 46.

    Teter, D. M. Computational alchemy: the search for new superhard materials. MRS Bull. 23, 22–27 (1998).

    CAS  Google Scholar 

  • 47.

    Bewilogua, K. & Hofmann, D. History of diamond-like carbon films — from first experiments to worldwide applications. Surf. Coat. Technol. 242, 214–225 (2014).

    CAS  Google Scholar 

  • 48.

    Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S. O. & Gogotsi, Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006).

    CAS  PubMed  Google Scholar 

  • 49.

    Pu, J.-C., Wang, S.-F. & Sung, J. C. High-temperature oxidation behaviors of CVD diamond films. Appl. Surf. Sci. 256, 668–673 (2009).

    CAS  Google Scholar 

  • 50.

    Ishii, T. et al. Generation of pressures over 40 GPa using Kawai-type multi-anvil press with tungsten carbide anvils. Rev. Sci. Instrum. 87, 024501 (2016).

    CAS  PubMed  Google Scholar 

  • 51.

    Kubo, A. & Akaogi, M. Post-garnet transitions in the system Mg4Si4O12-Mg3Al2Si3O12 up to 28 GPa: phase relations of garnet, ilmenite and perovskite. Phys. Earth Planet. Inter. 121, 85–102 (2000).

    CAS  Google Scholar 

  • 52.

    Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  • 53.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  • 54.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  • 55.

    Wooten, F., Winer, K. & Weaire, D. Computer generation of structural models of amorphous Si and Ge. Phys. Rev. Lett. 54, 1392–1395 (1985).

    CAS  PubMed  Google Scholar 

  • 56.

    Keating, P. N. Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure. Phys. Rev. 145, 637–645 (1966).

    CAS  Google Scholar 

  • 57.

    Mishin, Y., Mehl, M. J. & Papaconstantopoulos, D. A. Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations. Acta Mater. 53, 4029–4041 (2005).

    CAS  Google Scholar 

  • 58.

    Brommer, P. & Gähler, F. Potfit: effective potentials from ab initio data. Model. Simul. Mat. Sci. Eng. 15, 295–304 (2007).

    CAS  Google Scholar 

  • 59.

    Cheng, Y. Q., Ma, E. & Sheng, H. W. Atomic level structure in multicomponent bulk metallic glass. Phys. Rev. Lett. 102, 245501 (2009).

    CAS  PubMed  Google Scholar 

  • 60.

    Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Maragliano, L. & Vanden-Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett. 426, 168–175 (2006).

    CAS  Google Scholar 

  • 62.

    Colón-Ramos, D. A., La Riviere, P., Shroff, H. & Oldenbourg, R. Promoting transparency and reproducibility in enhanced molecular simulations. Nat. Methods 16, 670–673 (2019).

    Google Scholar 

  • 63.

    Finney, J. L. Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. A Math. Phys. Sci. 319, 479–493 (1970).

    CAS  Google Scholar 

  • 64.

    Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    CAS  Google Scholar 

  • 65.

    Stukowski, A. Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mat. Sci. Eng. 20, 045021 (2012).

    Google Scholar 

  • 66.

    Baxter, R. J. Method of solution of the Percus-Yevick, hypernetted-chain, or similar equations. Phys. Rev. 154, 170–174 (1967).

    CAS  Google Scholar 

  • 67.

    Dixon, M. & Hutchinson, P. A method for the extrapolation of pair distribution functions. Mol. Phys. 33, 1663–1670 (1977).

    CAS  Google Scholar 

  • 68.

    Lobato, I., van Aert, S. & Verbeeck, J. Progress and new advances in simulating electron microscopy datasets using MULTEM. Ultramicroscopy 168, 17–27 (2016).

    CAS  PubMed  Google Scholar 

  • 69.

    Serebryanaya, N., Blank, V., Ivdenko, V. & Chernozatonskii, L. Pressure-induced superhard phase of C60. Solid State Commun. 118, 183–187 (2001).

    CAS  Google Scholar 

  • 70.

    Kumar, R. S. et al. X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure. Diam. Relat. Mater. 16, 1250–1253 (2007).

    CAS  Google Scholar 

  • 71.

    Solozhenko, V. L., Kurakevych, O. O., Andrault, D., Le Godec, Y. & Mezouar, M. Ultimate metastable solubility of boron in diamond: synthesis of superhard diamondlike BC5. Phys. Rev. Lett. 102, 015506 (2009).

    PubMed  Google Scholar 

  • 72.

    Solozhenko, V. L., Dub, S. N. & Novikov, N. V. Mechanical properties of cubic BC2N, a new superhard phase. Diam. Relat. Mater. 10, 2228–2231 (2001).

    CAS  Google Scholar 

  • 73.

    Pan, Z., Sun, H., Zhang, Y. & Chen, C. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite. Phys. Rev. Lett. 102, 055503 (2009).

    PubMed  Google Scholar 

  • 74.

    Blase, X., Gillet, P., Miguel, A. S. & Mélinon, P. Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92 (2004).

  • 75.

    Li, B., Sun, H. & Chen, C. Extreme mechanics of probing the ultimate strength of nanotwinned diamond. Phys. Rev. Lett. 117 (2016).

  • 76.

    Chang, Y. Y., Jacobsen, S. D., Kimura, M., Irifune, T. & Ohno, I. Elastic properties of transparent nano-polycrystalline diamond measured by GHz-ultrasonic interferometry and resonant sphere methods. Phys. Earth Planet. Inter. 228, 47–55 (2014).

    CAS  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top