Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

Systems-level effects of allosteric perturbations to a model molecular switch

  • 1.

    Ferrell, J. E. & Ha, S. H. Ultrasensitivity part I: Michaelian responses and zero-order ultrasensitivity. Trends Biochem. Sci 39, 496–503 (2014).

    CAS  Article  Google Scholar 

  • 2.

    Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).

    ADS  MathSciNet  CAS  Article  Google Scholar 

  • 3.

    Eisenberg, D., Marcotte, E. M., Xenarios, I. & Yeates, T. O. Protein function in the post-genomic era. Nature 405, 823–826 (2000).

    CAS  Article  Google Scholar 

  • 4.

    Rush, M. G., Drivas, G. & D’Eustachio, P. The small nuclear GTPase Ran: how much does it run? BioEssays 18, 103–112 (1996).

    CAS  Article  Google Scholar 

  • 5.

    Collins, S. R., Schuldiner, M., Krogan, N. J. & Weissman, J. S. A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol. 7, R63 (2006).

    Article  Google Scholar 

  • 6.

    Braberg, H. et al. Genetic interaction mapping informs integrative structure determination of protein complexes. Science 370, eaaz4910 (2020).

    CAS  Article  Google Scholar 

  • 7.

    Braberg, H. et al. From structure to systems: high-resolution, quantitative genetic analysis of RNA polymerase II. Cell 154, 775–788 (2013).

    CAS  Article  Google Scholar 

  • 8.

    Dasso, M. The Ran GTPase: theme and variations. Curr. Biol. 12, R502–R508 (2002).

    CAS  Article  Google Scholar 

  • 9.

    Bischoff, F. R. & Ponstingl, H. in The Small GTPase Ran Vol. 1 (eds Rush, M. & D’Eustachio, P.) 163–176 (Springer, 2001); https://doi.org/10.1007/978-1-4615-1501-2_9

  • 10.

    Moore, M. S. & Blobel, G. The GTP-binding protein Ran/TC4 is required for protein import into the nucleus. Nature 365, 661–663 (1993).

    ADS  CAS  Article  Google Scholar 

  • 11.

    Köhler, A. & Hurt, E. Exporting RNA from the nucleus to the cytoplasm. Nat. Rev. Mol. Cell Biol. 8, 761–773 (2007).

    Article  Google Scholar 

  • 12.

    Arnaoutov, A. & Dasso, M. The Ran GTPase regulates kinetochore function. Dev. Cell 5, 99–111 (2003).

    CAS  Article  Google Scholar 

  • 13.

    Ren, M. et al. Separate domains of the Ran GTPase interact with different factors to regulate nuclear protein import and RNA processing. Mol. Cell. Biol. 15, 2117–2124 (1995).

    CAS  Article  Google Scholar 

  • 14.

    Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).

    Article  Google Scholar 

  • 15.

    Geyer, M. et al. Conformational states of the nuclear GTP-binding protein Ran and its complexes with the exchange factor RCC1 and the effector protein RanBP1. Biochemistry 38, 11250–11260 (1999).

    CAS  Article  Google Scholar 

  • 16.

    Henriksen, P. et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol. Cell. Proteomics 11, 1510–1522 (2012).

    Article  Google Scholar 

  • 17.

    de Boor, S. et al. Small GTP-binding protein Ran is regulated by posttranslational lysine acetylation. Proc. Natl Acad. Sci. USA 112, E3679–E3688 (2015).

    Article  Google Scholar 

  • 18.

    Besray Unal, E. et al. Systems level expression correlation of Ras GTPase regulators. Cell Commun. Signal. 16, 46 (2018).

    CAS  Article  Google Scholar 

  • 19.

    Görlich, D., Seewald, M. J. & Ribbeck, K. Characterization of Ran-driven cargo transport and the RanGTPase system by kinetic measurements and computer simulation. EMBO J. 22, 1088–1100 (2003).

    Article  Google Scholar 

  • 20.

    Barr, F. A. Review series: Rab GTPases and membrane identity: causal or inconsequential? J. Cell Biol. 202, 191–199 (2013).

    CAS  Article  Google Scholar 

  • 21.

    Levy, E. D. A simple definition of structural regions in proteins and its use in analyzing interface evolution. J. Mol. Biol. 403, 660–670 (2010).

    CAS  Article  Google Scholar 

  • 22.

    Rojas, A. M., Fuentes, G., Rausell, A. & Valencia, A. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J. Cell Biol. 196, 189–201 (2012).

    CAS  Article  Google Scholar 

  • 23.

    Collins, S. R., Roguev, A. & Krogan, N. J. Quantitative genetic interaction mapping using the E-MAP approach. Methods Enzymol. 470, 205–231 (2010).

    CAS  Article  Google Scholar 

  • 24.

    Schuldiner, M. et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519 (2005).

    CAS  Article  Google Scholar 

  • 25.

    Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387–391 (2002).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Collins, S. R. et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810 (2007).

    ADS  CAS  Article  Google Scholar 

  • 27.

    Cherry, J. M. et al. SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26, 73–79 (1998).

    CAS  Article  Google Scholar 

  • 28.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    MathSciNet  MATH  Google Scholar 

  • 29.

    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188, 1124 (2001).

    MathSciNet  Article  Google Scholar 

  • 30.

    Jäger, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2011).

    ADS  Article  Google Scholar 

  • 31.

    Jäger, S. et al. Purification and characterization of HIV–human protein complexes. Methods 53, 13–19 (2011).

    Article  Google Scholar 

  • 32.

    Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    CAS  Article  Google Scholar 

  • 33.

    Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    CAS  Article  Google Scholar 

  • 34.

    Teo, G. et al. SAINTexpress: improvements and additional features in Significance Analysis of INTeractome software. J. Proteomics 100, 37–43 (2014).

    CAS  Article  Google Scholar 

  • 35.

    Choi, M. et al. MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments. Bioinformatics 30, 2524–2526 (2014).

    CAS  Article  Google Scholar 

  • 36.

    Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expression Purif. 41, 207–234 (2005).

    CAS  Article  Google Scholar 

  • 37.

    Markley, J. L. et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids—IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J. Biomol. NMR 12, 1–23 (1998).

    CAS  Article  Google Scholar 

  • 38.

    Mishra, A. K. & Lambright, D. G. High-throughput assay for profiling the substrate specificity of Rab GTPase-activating proteins. Methods Mol. Biol. 1298, 47–60 (2015).

    CAS  Article  Google Scholar 

  • 39.

    Goudar, C. T., Sonnad, J. R. & Duggleby, R. G. Parameter estimation using a direct solution of the integrated Michaelis–Menten equation. Biochim. Biophys. Acta 1429, 377–383 (1999).

    CAS  Article  Google Scholar 

  • 40.

    Malaby, A. W. et al. Methods for analysis of size-exclusion chromatography–small-angle X-ray scattering and reconstruction of protein scattering. J. Appl. Crystallogr. 48, 1102–1113 (2015).

    CAS  Article  Google Scholar 

  • 41.

    Klebe, C., Bischoff, F. R., Ponstingl, H. & Wittinghofer, A. Interaction of the nuclear GTP-binding protein Ran with its regulatory proteins RCC1 and RanGAP1. Biochemistry 34, 639–647 (1995).

    CAS  Article  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *