The field-free Josephson diode in a van der Waals heterostructure

  • Misaki, K. & Nagaosa, N. Theory of the nonreciprocal Josephson effect. Phys. Rev. B 103, 245302 (2021).

    ADS  CAS  Article  Google Scholar 

  • Hu, J., Wu, C. & Dai, X. Proposed design of a Josephson diode. Phys. Rev. Lett. 99, 067004 (2007).

    ADS  Article  Google Scholar 

  • Chen, C.-Z. et al. Asymmetric Josephson effect in inversion symmetry breaking topological materials. Phys. Rev. B 98, 075430 (2018).

    ADS  CAS  Article  Google Scholar 

  • Tokura, Y. & Nagaosa, N. Non-reciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    ADS  Article  Google Scholar 

  • Fruchart, M., Hanai, R., Littlewood, P. B. & Vitelli, V. Non-reciprocal phase transitions. Nature 592, 363–369 (2021).

    ADS  CAS  Article  Google Scholar 

  • Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 372, 68–72 (2021).

    ADS  CAS  Article  Google Scholar 

  • Sze, S. M. & Lee, M.-K. Semiconductor Devices: Physics and Technology 3rd edn (Wiley, 2012).

  • Ando, F. et al. Observation of superconducting diode effect. Nature 584, 373–376 (2020).

    CAS  Article  Google Scholar 

  • Wakatsuki, R. et al. Non-reciprocal charge transport in noncentrosymmetric superconductors. Sci. Adv. 3, e1602390 (2017).

    ADS  Article  Google Scholar 

  • Zhang, E. et al. Nonreciprocal superconducting NbSe2 antenna. Nat. Commun. 11, 5634 (2020).

    ADS  CAS  Article  Google Scholar 

  • Baumgartner, C. et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions. Nat. Nanotechnol. 17, 39–44 (2022).

    ADS  CAS  Article  Google Scholar 

  • Yuan, N. F. Q. & Fu, L. Supercurrent diode effect and finite momentum superconductivity. Preprint at https://arxiv.org/abs/2106.01909 (2021).

  • Daido, A., Ikeda, Y. & Yanase, Y. Intrinsic superconducting diode effect. Phys. Rev. Lett. 128, 037001 (2022).

    ADS  CAS  Article  Google Scholar 

  • Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Article  Google Scholar 

  • Ideue, T., Koshikawa, S., Namiki, H., Sasagawa, T. & Iwasa, Y. Giant nonreciprocal magnetotransport in bulk trigonal superconductor PbTaSe2. Phys. Rev. Res. 2, 042046(R) (2020).

    Article  Google Scholar 

  • Wang, Y. et al. Gigantic magnetochiral anisotropy in the topological semimetal ZrTe5. Preprint at https://arxiv.org/abs/2011.03329 (2021).

  • Likharev, K. K. Dynamics of Josephson Junctions and Circuits (Gordon and Breach Science Publishers, 1986).

  • Likharev, K. K. Superconducting weak links. Rev. Mod. Phys. 51, 101–159 (1979).

    ADS  Article  Google Scholar 

  • Dubos, P. et al. Josephson critical current in a long mesoscopic S-N-S junction. Phys. Rev. B 63, 064502 (2001).

    ADS  Article  Google Scholar 

  • Golubov, A. A., Kupriyanov, M. Y. & Il’ichev, E. The current-phase relation in Josephson junctions. Rev. Mod. Phys. 76, 411–469 (2004).

    ADS  CAS  Article  Google Scholar 

  • Lee, G.-H. et al. Graphene-based Josephson junction microwave bolometer. Nature 586, 42–46 (2020).

    ADS  CAS  Article  Google Scholar 

  • Walsh, E. D. et al. Josephson junction infrared single-photon detector. Science 372, 409–412 (2021).

    ADS  CAS  Article  Google Scholar 

  • Clarke, J. & Wilhelm, F. K. Superconducting quantum bits. Nature 453, 1031–1042 (2008).

    ADS  CAS  Article  Google Scholar 

  • Likharev, K. K. & Semenov, V. K. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Trans. Appl. Supercond. 1, 3–28 (1991).

    ADS  Article  Google Scholar 

  • Devoret, M. H. & Schoelkopf, R. J. Superconducting circuits for quantum information: an outlook. Science 339, 1169–1174 (2013).

    ADS  CAS  Article  Google Scholar 

  • Jiang, J. et al. Exploration of new ferromagnetic, semiconducting and biocompatible Nb3X8 (X = Cl, Br or I) monolayers with considerable visible and infrared light absorption. Nanoscale 9, 2992–3001 (2017).

    CAS  Article  Google Scholar 

  • Pasco, C. M., El Baggari, I., Bianco, E., Kourkoutis, L. F. & McQueen, T. M. Tunable magnetic transition to a singlet ground state in a 2D van der Waals layered trimerized Kagome magnet. ACS Nano 13, 9457–9463 (2019).

    CAS  Article  Google Scholar 

  • Yoon, J. et al. Anomalous thickness-dependent electrical conductivity in van der Waals layered transition metal halide, Nb3Cl8. J. Phys. Condens. Matter 32, 304004 (2020).

    CAS  Article  Google Scholar 

  • Haraguchi, Y. et al. Magnetic-nonmagnetic phase transition with interlayer charge disproportionation of Nb3 trimers in the cluster compound Nb3Cl8. Inorg. Chem. 56, 3483–3488 (2017).

    CAS  Article  Google Scholar 

  • Sheckelton, J. P., Plumb, K. W., Trump, B. A., Broholm, C. L. & McQueen, T. M. Rearrangement of van der Waals stacking and formation of a singlet state at T = 90 K in a cluster magnet. Inorg. Chem. Front. 4, 481–490 (2017).

    CAS  Article  Google Scholar 

  • Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS  Article  Google Scholar 

  • Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2015).

    Article  Google Scholar 

  • Kleiner, R., Koelle, D., Ludwig, F. & Clarke, J. Superconducting quantum interference devices: state of the art and applications. Proc. IEEE 92, 1534–1548 (2004).

    CAS  Article  Google Scholar 

  • Yabuki, N. et al. Supercurrent in van der Waals Josephson junction. Nat. Commun. 7, 10616 (2016).

    ADS  CAS  Article  Google Scholar 

  • Kim, M. et al. Strong proximity Josephson coupling in vertically stacked NbSe2-graphene-NbSe2 van der Waals junctions. Nano Lett. 17, 6125–6130 (2017).

    ADS  CAS  Article  Google Scholar 

  • Kitamura, S., Nagaosa, N. & Morimoto, T. Nonreciprocal Landau–Zener tunneling. Commun. Phys. 3, 63 (2020).

    Article  Google Scholar 

  • Xu, Y. et al. Filling-enforced obstructed atomic insulators. Preprint at https://arxiv.org/abs/2106.10276 (2021).

  • Xu, Y. et al. Three-dimensional real space invariants, obstructed atomic insulators and a new principle for active catalytic sites. Preprint at https://arxiv.org/abs/2111.02433 (2021).

  • Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    ADS  CAS  Article  Google Scholar 

  • Wang, Z. et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat. Commun. 9, 2516 (2018).

    ADS  Article  Google Scholar 

  • Krasnov, V. M., Oboznov, V. A. & Pedersen, N. F. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity. Phys. Rev. B 55, 14486–14498 (1997).

    ADS  CAS  Article  Google Scholar 

  • Goldman, A. M. & Kreisman, P. J. Meissner effect and vortex penetration in Josephson junctions. Phys. Rev. 164, 544–547 (1967).

    ADS  Article  Google Scholar 

  • Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    ADS  CAS  Article  Google Scholar 

  • Watanabe, N. et al. The shape dependency of two-dimensional magnetic field dependence of a Josephson junction. J. Appl. Phys. 103, 07C707 (2008).

    Article  Google Scholar 

  • Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    ADS  CAS  Article  Google Scholar 

  • Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    ADS  CAS  Article  Google Scholar 

  • Related Posts

    Leave a Reply

    Your email address will not be published.

    %d bloggers like this: