Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

The native structure of the assembled matrix protein 1 of influenza A virus

  • 1.

    Rossman, J. S. & Lamb, R. A. Influenza virus assembly and budding. Virology 411, 229–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 2.

    Elster, C., Larsen, K., Gagnon, J., Ruigrok, R. W. & Baudin, F. Influenza virus M1 protein binds to RNA through its nuclear localization signal. J. Gen. Virol. 78, 1589–1596 (1997).

    CAS  PubMed  Google Scholar 

  • 3.

    Noton, S. L. et al. Identification of the domains of the influenza A virus M1 matrix protein required for NP binding, oligomerization and incorporation into virions. J. Gen. Virol. 88, 2280–2290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 4.

    Chen, B. J., Takeda, M. & Lamb, R. A. Influenza virus hemagglutinin (H3 subtype) requires palmitoylation of its cytoplasmic tail for assembly: M1 proteins of two subtypes differ in their ability to support assembly. J. Virol. 79, 13673–13684 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 5.

    Zhang, J., Pekosz, A. & Lamb, R. A. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J. Virol. 74, 4634–4644 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 6.

    Chu, C. M., Dawson, I. M. & Elford, W. J. Filamentous forms associated with newly isolated influenza virus. Lancet 253, 602 (1949).

    Google Scholar 

  • 7.

    Mosley, V. M. & Wyckoff, R. W. G. Electron micrography of the virus of influenza. Nature 157, 263 (1946).

    ADS  CAS  PubMed  Google Scholar 

  • 8.

    Wrigley, N. G. Electron microscopy of influenza virus. Br. Med. Bull. 35, 35–38 (1979).

    CAS  PubMed  Google Scholar 

  • 9.

    Ruigrok, R. W., Calder, L. J. & Wharton, S. A. Electron microscopy of the influenza virus submembranal structure. Virology 173, 311–316 (1989).

    CAS  PubMed  Google Scholar 

  • 10.

    Nermut, M. V. Further investigation on the fine structure of influenza virus. J. Gen. Virol. 17, 317–331 (1972).

    CAS  PubMed  Google Scholar 

  • 11.

    Fontana, J. & Steven, A. C. At low pH, influenza virus matrix protein M1 undergoes a conformational change prior to dissociating from the membrane. J. Virol. 87, 5621–5628 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 12.

    Sha, B. & Luo, M. Structure of a bifunctional membrane-RNA binding protein, influenza virus matrix protein M1. Nat. Struct. Biol. 4, 239–244 (1997).

    CAS  PubMed  Google Scholar 

  • 13.

    Arzt, S. et al. Combined results from solution studies on intact influenza virus M1 protein and from a new crystal form of its N-terminal domain show that M1 is an elongated monomer. Virology 279, 439–446 (2001).

    CAS  PubMed  Google Scholar 

  • 14.

    Harris, A., Forouhar, F., Qiu, S., Sha, B. & Luo, M. The crystal structure of the influenza matrix protein M1 at neutral pH: M1–M1 protein interfaces can rotate in the oligomeric structures of M1. Virology 289, 34–44 (2001).

    CAS  PubMed  Google Scholar 

  • 15.

    Zhang, W. et al. Crystal structure of an orthomyxovirus matrix protein reveals mechanisms for self-polymerization and membrane association. Proc. Natl Acad. Sci. USA 114, 8550–8555 (2017).

    CAS  PubMed  Google Scholar 

  • 16.

    Sugita, Y., Noda, T., Sagara, H. & Kawaoka, Y. Ultracentrifugation deforms unfixed influenza A virions. J. Gen. Virol. 92, 2485–2493 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 17.

    Vijayakrishnan, S. et al. Cryotomography of budding influenza A virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog. 9, e1003413 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 18.

    Calder, L. J., Wasilewski, S., Berriman, J. A. & Rosenthal, P. B. Structural organization of a filamentous influenza A virus. Proc. Natl Acad. Sci. USA 107, 10685–10690 (2010).

    ADS  CAS  PubMed  Google Scholar 

  • 19.

    Chlanda, P. et al. Structural analysis of the roles of influenza A virus membrane-associated proteins in assembly and morphology. J. Virol. 89, 8957–8966 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 20.

    Ruigrok, R. W. H. et al. Membrane interaction of influenza virus M1 protein. Virology 267, 289–298 (2000).

    CAS  PubMed  Google Scholar 

  • 21.

    Bourmakina, S. V. & García-Sastre, A. Reverse genetics studies on the filamentous morphology of influenza A virus. J. Gen. Virol. 84, 517–527 (2003).

    CAS  PubMed  Google Scholar 

  • 22.

    Elleman, C. J. & Barclay, W. S. The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology 321, 144–153 (2004).

    CAS  PubMed  Google Scholar 

  • 23.

    Burleigh, L. M., Calder, L. J., Skehel, J. J. & Steinhauer, D. A. Influenza A viruses with mutations in the M1 helix six domain display a wide variety of morphological phenotypes. J. Virol. 79, 1262–1270 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 24.

    Shishkov, A. et al. Spatial structure peculiarities of influenza A virus matrix M1 protein in an acidic solution that simulates the internal lysosomal medium. FEBS J. 278, 4905–4916 (2011).

    CAS  PubMed  Google Scholar 

  • 25.

    Chiang, M.-J. et al. Maintaining pH-dependent conformational flexibility of M1 is critical for efficient influenza A virus replication. Emerg. Microbes Infect. 6, e108 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 26.

    Dahmani, I., Ludwig, K. & Chiantia, S. Influenza A matrix protein M1 induces lipid membrane deformation via protein multimerization. Biosci. Rep. 39, BSR20191024 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 27.

    Zhang, X. et al. Atomic model of a nonenveloped virus reveals pH sensors for a coordinated process of cell entry. Nat. Struct. Mol. Biol. 23, 74–80 (2016).

    CAS  PubMed  Google Scholar 

  • 28.

    Li, Z. & Blissard, G. W. Autographa californica multiple nucleopolyhedrovirus GP64 protein: roles of histidine residues in triggering membrane fusion and fusion pore expansion. J. Virol. 85, 12492–12504 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 29.

    Calder, L. J. & Rosenthal, P. B. Cryomicroscopy provides structural snapshots of influenza virus membrane fusion. Nat. Struct. Mol. Biol. 23, 853–858 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 30.

    Gui, L., Ebner, J. L., Mileant, A., Williams, J. A. & Lee, K. K. Visualization and sequencing of membrane remodeling leading to influenza virus fusion. J. Virol. 90, 6948–6962 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 31.

    Martínez-Sobrido, L. & García-Sastre, A. Generation of recombinant influenza virus from plasmid DNA. J. Vis. Exp. 42, 2057 (2010).

    Google Scholar 

  • 32.

    Tobita, K., Sugiura, A., Enomote, C. & Furuyama, M. Plaque assay and primary isolation of influenza A viruses in an established line of canine kidney cells (MDCK) in the presence of trypsin. Med. Microbiol. Immunol. (Berl.) 162, 9–14 (1975).

    CAS  Google Scholar 

  • 33.

    Wan, W. et al. Structure and assembly of the Ebola virus nucleocapsid. Nature 551, 394–397 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 34.

    Hagen, W. J. H., Wan, W. & Briggs, J. A. G. Implementation of a cryo-electron tomography tilt-scheme optimized for high resolution subtomogram averaging. J. Struct. Biol. 197, 191–198 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 35.

    Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    PubMed  PubMed Central  Google Scholar 

  • 36.

    Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    CAS  PubMed  Google Scholar 

  • 37.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 38.

    Grant, T. & Grigorieff, N. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6. eLife 4, e06980 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 39.

    Turoňová, B., Schur, F. K. M., Wan, W. & Briggs, J. A. G. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å. J. Struct. Biol. 199, 187–195 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 41.

    Förster, F., Medalia, O., Zauberman, N., Baumeister, W. & Fass, D. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc. Natl Acad. Sci. USA 102, 4729–4734 (2005).

    ADS  PubMed  Google Scholar 

  • 42.

    Nickell, S. et al. TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149, 227–234 (2005).

    PubMed  Google Scholar 

  • 43.

    Castaño-Díez, D., Kudryashev, M., Arheit, M. & Stahlberg, H. Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. J. Struct. Biol. 178, 139–151 (2012).

    PubMed  Google Scholar 

  • 44.

    Kovtun, O. et al. Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 561, 561–564 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • 45.

    Tan, Y. Z. et al. Addressing preferred specimen orientation in single-particle cryo-EM through tilting. Nat. Methods 14, 793–796 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 46.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS  PubMed  Google Scholar 

  • 47.

    Pervushin, K. Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33, 161–197 (2000).

    CAS  PubMed  Google Scholar 

  • 48.

    Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    CAS  PubMed  Google Scholar 

  • 49.

    Mayzel, M., Rosenlöw, J., Isaksson, L. & Orekhov, V. Y. Time-resolved multidimensional NMR with non-uniform sampling. J. Biomol. NMR 58, 129–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 50.

    Vranken, W. F. et al. The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687–696 (2005).

    CAS  PubMed  Google Scholar 

  • 51.

    Schwarzinger, S. et al. Sequence-dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc. 123, 2970–2978 (2001).

    CAS  PubMed  Google Scholar 

  • 52.

    Ferrage, F., Zoonens, M., Warschawski, D. E., Popot, J.-L. & Bodenhausen, G. Slow diffusion of macromolecular assemblies by a new pulsed field gradient NMR method. J. Am. Chem. Soc. 125, 2541–2545 (2003).

    CAS  PubMed  Google Scholar 

  • 53.

    García de la Torre, J., Huertas, M. L. & Carrasco, B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys. J. 78, 719–730 (2000).

    PubMed  PubMed Central  Google Scholar 

  • 54.

    Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 55.

    Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 56.

    Desfosses, A., Ciuffa, R., Gutsche, I. & Sachse, C. SPRING – an image processing package for single-particle based helical reconstruction from electron cryomicrographs. J. Struct. Biol. 185, 15–26 (2014).

    CAS  PubMed  Google Scholar 

  • 57.

    Zivanov, J., Nakane, T. & Scheres, S. H. W. A Bayesian approach to beam-induced motion correction in cryo-EM single-particle analysis. IUCrJ 6, 5–17 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 58.

    He, S. & Scheres, S. H. W. Helical reconstruction in RELION. J. Struct. Biol. 198, 163–176 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 59.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 60.

    Kidmose, R. T. et al. Namdinator – automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 61.

    Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    CAS  Google Scholar 

  • 62.

    Barad, B. A. et al. EMRinger: side chain-directed model and map validation for 3D cryo-electron microscopy. Nat. Methods 12, 943–946 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 63.

    Das, S. C. et al. The highly conserved arginine residues at positions 76 through 78 of influenza A virus matrix protein M1 play an important role in viral replication by affecting the intracellular localization of M1. J. Virol. 86, 1522–1530 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 64.

    Baudin, F., Petit, I., Weissenhorn, W. & Ruigrok, R. W. In vitro dissection of the membrane and RNP binding activities of influenza virus M1 protein. Virology 281, 102–108 (2001).

    CAS  PubMed  Google Scholar 

  • 65.

    Zhang, K. et al. Two polar residues within C-terminal domain of M1 are critical for the formation of influenza A virions. Cell. Microbiol. 17, 1583–1593 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 66.

    Wu, C. Y., Jeng, K. S. & Lai, M. M. C. The SUMOylation of matrix protein M1 modulates the assembly and morphogenesis of influenza A virus. J. Virol. 85, 6618–6628 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top