Oops! It appears that you have disabled your Javascript. In order for you to see this page as it is meant to appear, we ask that you please re-enable your Javascript!

The physical mechanisms of fast radio bursts

  • 1.

    Lorimer, D. R., Bailes, M., McLaughlin, M. A., Narkevic, D. J. & Crawford, F. A bright millisecond radio burst of extragalactic origin. Science 318, 777–780 (2007). This discovery paper marks the birth of the FRB research field.

    CAS  Article  Google Scholar 

  • 2.

    Thornton, D. et al. A population of fast radio bursts at cosmological distances. Science 341, 53–56 (2013).

    CAS  Google Scholar 

  • 3.

    Petroff, E. et al. Identifying the source of perytons at the Parkes radio telescope. Mon. Not. R. Astron. Soc. 451, 3933–3940 (2015).

    Google Scholar 

  • 4.

    Spitler, L. G. et al. A repeating fast radio burst. Nature 531, 202–205 (2016). This paper reports the discovery of the first repeating FRB source: FRB 121102.

    CAS  Google Scholar 

  • 5.

    Chatterjee, S. et al. A direct localization of a fast radio burst and its host. Nature 541, 58–61 (2017).

    CAS  Google Scholar 

  • 6.

    Marcote, B. et al. The repeating fast radio burst FRB 121102 as seen on milliarcsecond angular scales. Astrophys. J. 834, L8 (2017).

    Google Scholar 

  • 7.

    Tendulkar, S. P. et al. The host galaxy and redshift of the repeating fast radio burst FRB 121102. Astrophys. J. 834, L7 (2017). This paper reports the discovery of the first host galaxy and redshift of an FRB source: FRB 121102.

    Google Scholar 

  • 8.

    Loeb, A., Shvartzvald, Y. & Maoz, D. Fast radio bursts may originate from nearby flaring stars. Mon. Not. R. Astron. Soc. 439, L46–L50 (2014).

    Google Scholar 

  • 9.

    Platts, E. et al. A living theory catalogue for fast radio bursts. Phys. Rep. 821, 1–27 (2019).

    MathSciNet  Google Scholar 

  • 10.

    Kulkarni, S. R. From gamma-ray bursts to fast radio bursts. Nat. Astron. 2, 832–835 (2018).

    Google Scholar 

  • 11.

    The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar. Nature http://doi.org/10.1038/s41586-020-2863-y (2020). This paper reports the discovery of an FRB associated with a Galactic SGR, establishing the magnetar origin of at least some FRBs.

  • 12.

    Bochenek, C. D. et al. A fast radio burst associated with a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2872-x (2020). This paper also reports the discovery of an FRB associated with a Galactic SGR, establishing the magnetar origin of at least some FRBs.

  • 13.

    Li, C. K. et al. Identification of a non-thermal X-ray burst with the Galactic magnetar SGR 1935+2154 and a fast radio burst with Insight-HXMT. Preprint at https://arxiv.org/abs/2005.11071 (2020).

  • 14.

    Ridnaia, A. et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst. Preprint at https://arxiv.org/abs/2005.11178 (2020).

  • 15.

    Mereghetti, S. et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154. Astrophys. J. 898, L29 (2020).

    CAS  Google Scholar 

  • 16.

    Tavani, M. et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts. Preprint at https://arxiv.org/abs/2005.12164 (2020).

  • 17.

    Petroff, E., Hessels, J. W. T. & Lorimer, D. R. Fast radio bursts. Astron. Astrophys. Rev. 27, 4 (2019). This paper is a comprehensive review of the FRB field summarizing observational properties of FRBs as of 2019.

    Google Scholar 

  • 18.

    Cordes, J. M. & Chatterjee, S. Fast radio bursts: an extragalactic enigma. Annu. Rev. Astron. Astrophys. 57, 417–465 (2019). This paper is another comprehensive review of the FRB field summarizing the observational properties of FRBs as of 2019.

    Google Scholar 

  • 19.

    Lorimer, D. R. A decade of fast radio bursts. Nat. Astron. 2, 860–864 (2018).

    Google Scholar 

  • 20.

    Katz, J. I. Fast radio bursts. Prog. Part. Nucl. Phys. 103, 1–18 (2018).

    Google Scholar 

  • 21.

    Popov, S. B., Postnov, K. A. & Pshirkov, M. S. Fast radio bursts. Phys. Uspekhi 61, 965 (2018).

    CAS  Google Scholar 

  • 22.

    CHIME/FRB Collaboration. A second source of repeating fast radio bursts. Nature 566, 235–238 (2019).

    Google Scholar 

  • 23.

    The CHIME/FRB Collaboration. CHIME/FRB detection of eight new repeating fast radio burst sources. Astrophys. J. 885, L24 (2019).

    Google Scholar 

  • 24.

    Kumar, P. et al. Faint repetitions from a bright fast radio burst source. Astrophys. J. 887, L30 (2019).

    Google Scholar 

  • 25.

    Luo, R. et al. Diverse polarisation angle swings from a repeating fast radio burst source. Nature (in the press).

  • 26.

    Ravi, V. The prevalence of repeating fast radio bursts. Nat. Astron. 3, 928–931 (2019).

    Google Scholar 

  • 27.

    Lu, W., Piro, A. L. & Waxman, E. Implications of CHIME repeating fast radio bursts. Preprint at https://arxiv.org/abs/2003.12581 (2020).

  • 28.

    Petroff, E. et al. A survey of FRB fields: limits on repeatability. Mon. Not. R. Astron. Soc. 454, 457–462 (2015).

    Google Scholar 

  • 29.

    Palaniswamy, D., Li, Y. & Zhang, B. Are there multiple populations of fast radio bursts? Astrophys. J. 854, L12 (2018).

    Google Scholar 

  • 30.

    Caleb, M., Stappers, B. W., Rajwade, K. & Flynn, C. Are all fast radio bursts repeating sources? Mon. Not. R. Astron. Soc. 484, 5500–5508 (2019).

    CAS  Google Scholar 

  • 31.

    Zhang, Y. G. et al. Fast radio burst 121102 pulse detection and periodicity: a machine learning approach. Astrophys. J. 866, 149 (2018).

    Google Scholar 

  • 32.

    The CHIME/FRB Collaboration. Periodic activity from a fast radio burst source. Nature 582, 351–355 (2020).

    Google Scholar 

  • 33.

    Rajwade, K. M. et al. Possible periodic activity in the repeating FRB 121102. Mon. Not. R. Astron. Soc. 495, 3551–3558 (2020).

    Google Scholar 

  • 34.

    Ioka, K. & Zhang, B. A binary comb model for periodic fast radio bursts. Astrophys. J. 893, L26 (2020).

    CAS  Google Scholar 

  • 35.

    Lyutikov, M., Barkov, M. V. & Giannios, D. FRB periodicity: mild pulsars in tight O/B-star binaries. Astrophys. J. 893, L39 (2020).

    Google Scholar 

  • 36.

    Dai, Z. G. & Zhong, S. Q. Periodic fast radio bursts as a probe of extragalactic asteroid belts. Astrophys. J. 895, L1 (2020).

    Google Scholar 

  • 37.

    Levin, Y., Beloborodov, A. M. & Bransgrove, A. Precessing flaring magnetar as a source of repeating FRB 180916.J0158+65. Astrophys. J. 895, L30 (2020).

    CAS  Google Scholar 

  • 38.

    Zanazzi, J. J. & Lai, D. Periodic fast radio bursts with neutron star free precession. Astrophys. J. 892, L15 (2020).

    CAS  Google Scholar 

  • 39.

    Yang, H. & Zou, Y.-C. Orbit-induced spin precession as a possible origin for periodicity in periodically repeating fast radio bursts. Astrophys. J. 893, L31 (2020).

    Google Scholar 

  • 40.

    Luan, J. & Goldreich, P. Physical constraints on fast radio bursts. Astrophys. J. 785, L26 (2014).

    Google Scholar 

  • 41.

    Cordes, J. M., Wharton, R. S., Spitler, L. G., Chatterjee, S. & Wasserman, I. Radio wave propagation and the provenance of fast radio bursts. Preprint at https://arxiv.org/abs/1605.05890 (2016).

  • 42.

    Xu, S. & Zhang, B. On the origin of the scatter broadening of fast radio burst pulses and astrophysical implications. Astrophys. J. 832, 199 (2016).

    Google Scholar 

  • 43.

    Hessels, J. W. T. et al. FRB 121102 bursts show complex time-frequency structure. Astrophys. J. 876, L23 (2019).

    CAS  Google Scholar 

  • 44.

    Petroff, E. et al. FRBCAT: the fast radio burst catalogue. Publ. Astron. Soc. Aust. 33, 45 (2016).

    Google Scholar 

  • 45.

    Bannister, K. W. et al. A single fast radio burst localized to a massive galaxy at cosmological distance. Science 365, 565–570 (2019).

    CAS  Google Scholar 

  • 46.

    Ravi, V. et al. A fast radio burst localized to a massive galaxy. Nature 572, 352–354 (2019).

    CAS  Google Scholar 

  • 47.

    Marcote, B. et al. A repeating fast radio burst source localized to a nearby spiral galaxy. Nature 577, 190–194 (2020).

    CAS  Google Scholar 

  • 48.

    Prochaska, J. X. et al. The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science 366, 231–234 (2019).

    CAS  Google Scholar 

  • 49.

    Macquart, J. P. et al. A census of baryons in the Universe from localized fast radio bursts. Nature 581, 391–395 (2020).

    CAS  Google Scholar 

  • 50.

    Li, Z. et al. Cosmology-insensitive estimate of IGM baryon mass fraction from five localized fast radio bursts. Mon. Not. R. Astron. Soc. 496, L28–L32 (2020).

    Google Scholar 

  • 51.

    Zhang, B. Fast radio burst energetics and detectability from high redshifts. Astrophys. J. 867, L21 (2018).

    Google Scholar 

  • 52.

    Lin, L. et al. No pulsed radio emission during a bursting phase of a Galactic magnetar. Nature https://doi.org/10.1038/s41586-020-2839-y (2020). This paper reports the non-detection of FRBs from many SGR bursts, suggesting that the FRB–SGR associations are rather rare.

  • 53.

    Kellermann, K. I. & Pauliny-Toth, I. I. K. The spectra of opaque radio sources. Astrophys. J. 155, L71 (1969).

    Google Scholar 

  • 54.

    Chawla, P. et al. Detection of repeating FRB 180916.J0158+65 down to frequencies of 300 MHz. Astrophys. J. 896, L41 (2020).

    CAS  Google Scholar 

  • 55.

    Gajjar, V. et al. Highest frequency detection of FRB 121102 at 4–8 GHz using the Breakthrough Listen digital backend at the Green Bank Telescope. Astrophys. J. 863, 2 (2018).

    Google Scholar 

  • 56.

    Law, C. J. et al. A multi-telescope campaign on FRB 121102: implications for the FRB population. Astrophys. J. 850, 76 (2017).

    Google Scholar 

  • 57.

    Karastergiou, A. et al. Limits on fast radio bursts at 145 MHz with ARTEMIS, a real-time software backend. Mon. Not. R. Astron. Soc. 452, 1254–1262 (2015).

    Google Scholar 

  • 58.

    Michilli, D. et al. An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102. Nature 553, 182–185 (2018).

    CAS  Google Scholar 

  • 59.

    Cho, H. et al. Spectropolarimetric analysis of FRB 181112 at microsecond resolution: implications for fast radio burst emission mechanism. Astrophys. J. 891, L38 (2020).

    Google Scholar 

  • 60.

    Day, C. K. et al. High time resolution and polarisation properties of ASKAP-localised fast radio bursts. Mon. Not. R. Astron. Soc. 497, 3335–3350 (2020) (2020).

    Google Scholar 

  • 61.

    Lorimer, D. R. & Kramer, M. Handbook of Pulsar Astronomy (Cambridge Univ. Press, 2012). This is a comprehensive book on pulsar astronomy, enabling comparison of FRB phenomenology with pulsar phenomenology.

  • 62.

    Radhakrishnan, V. & Cooke, D. J. Magnetic poles and the polarization structure of pulsar radiation. Astrophys. Lett. 3, 225 (1969).

    Google Scholar 

  • 63.

    Ravi, V. et al. The magnetic field and turbulence of the cosmic web measured using a brilliant fast radio burst. Science 354, 1249–1252 (2016).

    CAS  Google Scholar 

  • 64.

    Margalit, B. & Metzger, B. A concordance picture of FRB 121102 as a flaring magnetar embedded in a magnetized ion-electron wind nebula. Astrophys. J. 868, L4 (2018).

    CAS  Google Scholar 

  • 65.

    Yang, Y.-P., Li, Q.-C. & Zhang, B. Are persistent emission luminosity and rotation measure of fast radio bursts related? Astrophys. J. 895, 7 (2020).

    Google Scholar 

  • 66.

    Petroff, E. et al. A real-time fast radio burst: polarization detection and multiwavelength follow-up. Mon. Not. R. Astron. Soc. 447, 246–255 (2015).

    CAS  Google Scholar 

  • 67.

    Yi, S.-X., Gao, H. & Zhang, B. Multi-wavelength afterglows of fast radio bursts. Astrophys. J. 792, L21 (2014).

    Google Scholar 

  • 68.

    Bannister, K. W., Murphy, T., Gaensler, B. M. & Reynolds, J. E. Limits on prompt, dispersed radio pulses from gamma-ray bursts. Astrophys. J. 757, 38 (2012).

    Google Scholar 

  • 69.

    DeLaunay, J. J. et al. Discovery of a transient gamma-ray counterpart to FRB 131104. Astrophys. J. 832, L1 (2016).

    Google Scholar 

  • 70.

    Cunningham, V. et al. A search for high-energy counterparts to fast radio bursts. Astrophys. J. 879, 40 (2019).

    CAS  Google Scholar 

  • 71.

    Metzger, B. D., Berger, E. & Margalit, B. Millisecond magnetar birth connects FRB 121102 to superluminous supernovae and long-duration gamma-ray bursts. Astrophys. J. 841, 14 (2017). This paper proposes that young magnetars born in extreme explosions such as GRBs and superluminous supernovae are the engines of repeating FRBs.

    Google Scholar 

  • 72.

    Law, C. J. et al. A search for late-time radio emission and fast radio bursts from superluminous supernovae. Astrophys. J. 886, 24 (2019).

    CAS  Google Scholar 

  • 73.

    Men, Y. et al. Non-detection of fast radio bursts from six gamma-ray burst remnants with possible magnetar engines. Mon. Not. R. Astron. Soc. 489, 3643–3647 (2019).

    Google Scholar 

  • 74.

    Wang, X.-G. et al. Is GRB 110715A the progenitor of FRB 171209? Astrophys. J. 894, L22 (2020).

    CAS  Google Scholar 

  • 75.

    Bhandari, S. et al. The SUrvey for Pulsars and Extragalactic Radio Bursts—II. New FRB discoveries and their follow-up. Mon. Not. R. Astron. Soc. 475, 1427–1446 (2018).

    CAS  Google Scholar 

  • 76.

    Luo, R., Lee, K., Lorimer, D. R. & Zhang, B. On the normalized FRB luminosity function. Mon. Not. R. Astron. Soc. 481, 2320–2337 (2018).

    CAS  Google Scholar 

  • 77.

    Lu, W. & Piro, A. L. Implications from ASKAP fast radio burst statistics. Astrophys. J. 883, 40 (2019).

    CAS  Google Scholar 

  • 78.

    Luo, R. et al. On the FRB luminosity function. II. Event rate density. Mon. Not. R. Astron. Soc. 494, 665–679 (2020).

    Google Scholar 

  • 79.

    Lu, W., Kumar, P. & Zhang, B. A unified picture of Galactic and cosmological fast radio bursts. Mon. Not. R. Astron. Soc. 498, 1397–1405 (2020). (2020).

    Google Scholar 

  • 80.

    Nicholl, M. et al. Empirical constraints on the origin of fast radio bursts: volumetric rates and host galaxy demographics as a test of millisecond magnetar connection. Astrophys. J. 843, 84 (2017).

    Google Scholar 

  • 81.

    Bhandari, S. et al. The host galaxies and progenitors of fast radio bursts localized with the Australian Square Kilometre Array Pathfinder. Astrophys. J. 895, L37 (2020).

    CAS  Google Scholar 

  • 82.

    Li, Y. & Zhang, B. A comparative study of host galaxy properties between fast radio bursts and stellar transients. Astrophys. J. 899, L6 (2020).

    CAS  Google Scholar 

  • 83.

    Totani, T. Cosmological fast radio bursts from binary neutron star mergers. Publ. Astron. Soc. Jpn. 65, L12 (2013).

    Google Scholar 

  • 84.

    Zhang, B. A possible connection between fast radio bursts and gamma-ray bursts. Astrophys. J. 780, L21 (2013).

    Google Scholar 

  • 85.

    Wang, J.-S., Yang, Y.-P., Wu, X.-F., Dai, Z.-G. & Wang, F.-Y. Fast radio bursts from the inspiral of double neutron stars. Astrophys. J. 822, L7 (2016).

    Google Scholar 

  • 86.

    Margalit, B., Berger, E. & Metzger, B. D. Fast radio bursts from magnetars born in binary neutron star mergers and accretion induced collapse. Astrophys. J. 886, 110 (2019).

    CAS  Google Scholar 

  • 87.

    Wang, F. Y. et al. Fast radio bursts from activity of neutron stars newborn in BNS mergers: offset, birth rate, and observational properties. Astrophys. J. 891, 72 (2020).

    CAS  Google Scholar 

  • 88.

    Zhang, B. Fast radio bursts from interacting binary neutron star systems. Astrophys. J. 890, L24 (2020).

    CAS  Google Scholar 

  • 89.

    Zhang, B. The Physics of Gamma-Ray Bursts (Cambridge Univ. Press, 2018). This is a comprehensive book on GRB phenomenology and theoretical models, enabling cross-comparison of the FRB and the GRB fields.

  • 90.

    Popov, S. B. & Postnov, K. A. Hyperflares of SGRs as an engine for millisecond extragalactic radio bursts. In Evolution of Cosmic Objects through their Physical Activity (eds Harutyunian, H. A., Mickaelian, A. M. & Terzian, Y.) 129–132 (2010). This paper was the first to propose that SGRs are the sources of FRBs, an idea recently proved by the FRB 200428–SGR 1935+2154 association.

  • 91.

    Kulkarni, S. R., Ofek, E. O., Neill, J. D., Zheng, Z. & Juric, M. Giant sparks at cosmological distances? Astrophys. J. 797, 70 (2014).

    Google Scholar 

  • 92.

    Katz, J. I. How soft gamma repeaters might make fast radio bursts. Astrophys. J. 826, 226 (2016).

    Google Scholar 

  • 93.

    Lyubarsky, Y. A model for fast extragalactic radio bursts. Mon. Not. R. Astron. Soc. 442, L9–L13 (2014). This paper first proposes the synchrotron maser coherent mechanism to interpret FRBs.

    Google Scholar 

  • 94.

    Beloborodov, A. M. A flaring magnetar in FRB 121102? Astrophys. J. 843, L26 (2017).

    Google Scholar 

  • 95.

    Kumar, P., Lu, W. & Bhattacharya, M. Fast radio burst source properties and curvature radiation model. Mon. Not. R. Astron. Soc. 468, 2726–2739 (2017).

    CAS  Google Scholar 

  • 96.

    Yang, Y.-P. & Zhang, B. Bunching coherent curvature radiation in three-dimensional magnetic field geometry: application to pulsars and fast radio bursts. Astrophys. J. 868, 31 (2018).

    CAS  Google Scholar 

  • 97.

    Wadiasingh, Z. et al. The fast radio burst luminosity function and death line in the low-twist magnetar model. Astrophys. J. 891, 82 (2020).

    CAS  Google Scholar 

  • 98.

    Nemiroff, R. J. A century of gamma ray burst models. AIP Conf. Proc. 307, 730 (1994).

    CAS  Google Scholar 

  • 99.

    Waxman, E. On the origin of fast radio bursts (FRBs). Astrophys. J. 842, 34 (2017).

    Google Scholar 

  • 100.

    Plotnikov, I. & Sironi, L. The synchrotron maser emission from relativistic shocks in fast radio bursts: 1D PIC simulations of cold pair plasmas. Mon. Not. R. Astron. Soc. 485, 3816–3833 (2019).

    CAS  Google Scholar 

  • 101.

    Metzger, B. D., Margalit, B. & Sironi, L. Fast radio bursts as synchrotron maser emission from decelerating relativistic blast waves. Mon. Not. R. Astron. Soc. 485, 4091–4106 (2019).

    CAS  Google Scholar 

  • 102.

    Beloborodov, A. M. Blast waves from magnetar flares and fast radio bursts. Astrophys. J. 896, 142 (2020).

    Google Scholar 

  • 103.

    Melrose, D. B. Coherent emission mechanisms in astrophysical plasmas. Rev. Mod. Plasma Phys. 1, 5 (2017). This is a comprehensive review for coherent radio emission models for the sources in the Universe other than FRBs.

    Google Scholar 

  • 104.

    Harding, A. K. Gamma-ray pulsar light curves as probes of magnetospheric structure. J. Plasma Phys. 82, 635820306 (2016).

    Google Scholar 

  • 105.

    Rankin, J. M. Toward an empirical theory of pulsar emission. VI. The geometry of the conal emission region. Astrophys. J. 405, 285 (1993).

    Google Scholar 

  • 106.

    Ruderman, M. A. & Sutherland, P. G. Theory of pulsars—polar caps, sparks, and coherent microwave radiation. Astrophys. J. 196, 51–72 (1975).

    CAS  Google Scholar 

  • 107.

    Camilo, F. et al. The magnetar XTE J1810–197: variations in torque, radio flux density, and pulse profile morphology. Astrophys. J. 663, 497–504 (2007).

    CAS  Google Scholar 

  • 108.

    Zhang, B. Mergers of charged black holes: gravitational-wave events, short gamma-ray bursts, and fast radio bursts. Astrophys. J. 827, L31 (2016).

    Google Scholar 

  • 109.

    Levin, J., D’Orazio, D. J. & Garcia-Saenz, S. Black hole pulsar. Phys. Rev. D 98, 123002 (2018).

    MathSciNet  CAS  Google Scholar 

  • 110.

    Long, K. & Pe’er, A. Synchrotron maser from weakly magnetized neutron stars as the emission mechanism of fast radio bursts. Astrophys. J. 864, L12 (2018).

    Google Scholar 

  • 111.

    Katz, J. I. Coherent emission in fast radio bursts. Phys. Rev. D 89, 103009 (2014).

    Google Scholar 

  • 112.

    Lu, W. & Kumar, P. On the radiation mechanism of repeating fast radio bursts. Mon. Not. R. Astron. Soc. 477, 2470–2493 (2018). This paper is a comprehensive survey of many coherent emission models and a critical assessment of the validity of these models for FRBs.

    CAS  Google Scholar 

  • 113.

    Ghisellini, G. Synchrotron masers and fast radio bursts. Mon. Not. R. Astron. Soc. 465, L30–L33 (2017).

    CAS  Google Scholar 

  • 114.

    Lu, W., Kumar, P. & Narayan, R. Fast radio burst source properties from polarization measurements. Mon. Not. R. Astron. Soc. 483, 359–369 (2019).

    CAS  Google Scholar 

  • 115.

    Lyubarsky, Y. Induced scattering of short radio pulses. Astrophys. J. 682, 1443–1449 (2008).

    Google Scholar 

  • 116.

    Murase, K., Kashiyama, K. & Mészáros, P. A burst in a wind bubble and the impact on baryonic ejecta: high-energy gamma-ray flashes and afterglows from fast radio bursts and pulsar-driven supernova remnants. Mon. Not. R. Astron. Soc. 461, 1498–1511 (2016).

    CAS  Google Scholar 

  • 117.

    Kumar, P. & Lu, W. Radiation forces constrain the FRB mechanism. Mon. Not. R. Astron. Soc. 494, 1217–1228 (2020).

    Google Scholar 

  • 118.

    Piro, A. L. The impact of a supernova remnant on fast radio bursts. Astrophys. J. 824, L32 (2016).

    Google Scholar 

  • 119.

    Yang, Y.-P. & Zhang, B. Dispersion measure variation of repeating fast radio burst sources. Astrophys. J. 847, 22 (2017).

    Google Scholar 

  • 120.

    Yang, Y.-P., Zhang, B. & Dai, Z.-G. Synchrotron heating by a fast radio burst in a self-absorbed synchrotron nebula and its observational signature. Astrophys. J. 819, L12 (2016).

    Google Scholar 

  • 121.

    Goldreich, P. & Julian, W. H. Pulsar electrodynamics. Astrophys. J. 157, 869 (1969).

    Google Scholar 

  • 122.

    Lyubarsky, Y. Fast radio bursts from reconnection in a magnetar magnetosphere. Astrophys. J. 897, 1 (2020).

    Google Scholar 

  • 123.

    Melrose, D. B. Amplified linear acceleration emission applied to pulsars. Astrophys. J. 225, 557–573 (1978).

    Google Scholar 

  • 124.

    Melikidze, G. I., Gil, J. A. & Pataraya, A. D. The spark-associated soliton model for pulsar radio emission. Astrophys. J. 544, 1081–1096 (2000).

    CAS  Google Scholar 

  • 125.

    Yang, Y.-P., Zhu, J.-P., Zhang, B. & Wu, X.-F. Pair separation in parallel electric field in magnetar magnetosphere and narrow spectra of fast radio bursts. Astrophys. J. 901, L13 (2020). (2020).

    CAS  Google Scholar 

  • 126.

    Kumar, P. & Bošnjak, Ž. FRB coherent emission from decay of Alfvén waves. Mon. Not. R. Astron. Soc. 494, 2385–2395 (2020).

    Google Scholar 

  • 127.

    Zhang, B. A “cosmic comb” model of fast radio bursts. Astrophys. J. 836, L32 (2017).

    Google Scholar 

  • 128.

    Wang, W., Zhang, B., Chen, X. & Xu, R. On the time-frequency downward drifting of repeating fast radio bursts. Astrophys. J. 876, L15 (2019).

    CAS  Google Scholar 

  • 129.

    Usov, V. V. & Katz, J. I. Low frequency radio pulses from gamma-ray bursts? Astron. Astrophys. 364, 655–659 (2000).

    Google Scholar 

  • 130.

    Sagiv, A. & Waxman, E. Collective processes in relativistic plasma and their implications for gamma-ray burst afterglows. Astrophys. J. 574, 861–872 (2002).

    Google Scholar 

  • 131.

    Kaspi, V. M. & Beloborodov, A. M. Magnetars. Annu. Rev. Astron. Astrophys. 55, 261–301 (2017).

    CAS  Google Scholar 

  • 132.

    Thompson, C. & Duncan, R. C. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 408, 194–217 (1993).

    Google Scholar 

  • 133.

    Beniamini, P., Hotokezaka, K., van der Horst, A. & Kouveliotou, C. Formation rates and evolution histories of magnetars. Mon. Not. R. Astron. Soc. 487, 1426–1438 (2019).

    Google Scholar 

  • 134.

    Vink, J. & Kuiper, L. Supernova remnant energetics and magnetars: no evidence in favour of millisecond proto-neutron stars. Mon. Not. R. Astron. Soc. 370, L14–L18 (2006).

    Google Scholar 

  • 135.

    Tendulkar, S. P., Kaspi, V. M. & Patel, C. Radio nondetection of the SGR 1806–20 giant flare and implications for fast radio bursts. Astrophys. J. 827, 59 (2016).

    Google Scholar 

  • 136.

    Li, Y., Zhang, B., Nagamine, K. & Shi, J. The FRB 121102 host is atypical among nearby FRBs. Astrophys. J. 884, L26 (2019 (2019).

    CAS  Google Scholar 

  • 137.

    Thompson, C. & Duncan, R. C. The soft gamma repeaters as very strongly magnetized neutron stars—I. Radiative mechanism for outbursts. Mon. Not. R. Astron. Soc. 275, 255–300 (1995).

    Google Scholar 

  • 138.

    Margalit, B., Beniamini, P., Sridhar, N. & Metzger, B. D. implications of a “fast radio burst” from a galactic magnetar. Astrophys. J. 899, L27 (2020).

    CAS  Google Scholar 

  • 139.

    Katz, J. I. The FRB-SGR connection. Preprint at https://arxiv.org/abs/2006.03468 (2020).

  • 140.

    Yu, Y.-W., Zou, Y.-C., Dai, Z.-G. & Yu, W.-F. Revisiting the confrontation of the shock-powered synchrotron maser model with the Galactic FRB 200428. Preprint at https://arxiv.org/abs/2006.00484 (2020).

  • 141.

    Connor, L., Sievers, J. & Pen, U.-L. Non-cosmological FRBs from young supernova remnant pulsars. Mon. Not. R. Astron. Soc. 458, L19–L23 (2016).

    CAS  Google Scholar 

  • 142.

    Cordes, J. M. & Wasserman, I. Supergiant pulses from extragalactic neutron stars. Mon. Not. R. Astron. Soc. 457, 232–257 (2016).

    CAS  Google Scholar 

  • 143.

    Katz, J. I. Are fast radio bursts made by neutron stars? Mon. Not. R. Astron. Soc. 494, L64–L68 (2020).

    Google Scholar 

  • 144.

    Gu, W.-M., Dong, Y.-Z., Liu, T., Ma, R. & Wang, J. A neutron star-white dwarf binary model for repeating fast radio burst 121102. Astrophys. J. 823, L28 (2016).

    Google Scholar 

  • 145.

    Zhang, B. FRB 121102: a repeatedly combed neutron star by a nearby low-luminosity accreting supermassive black hole. Astrophys. J. 854, L21 (2018).

    Google Scholar 

  • 146.

    Katz, J. I. Searching for Galactic micro-FRB with lunar scattering. Mon. Not. R. Astron. Soc. 494, 3464–3468 (2020).

    Google Scholar 

  • 147.

    Dai, Z. G., Wang, J. S., Wu, X. F. & Huang, Y. F. Repeating fast radio bursts from highly magnetized pulsars traveling through asteroid belts. Astrophys. J. 829, 27 (2016).

    Google Scholar 

  • 148.

    Smallwood, J. L., Martin, R. G. & Zhang, B. Investigation of the asteroid-neutron star collision model for the repeating fast radio bursts. Mon. Not. R. Astron. Soc. 485, 1367–1376 (2019).

    CAS  Google Scholar 

  • 149.

    Dai, Z. G. A magnetar-asteroid impact model for FRB 200428 associated with an X-ray burst from SGR 1935+2154. Astrophys. J. 897, L40 (2020).

    CAS  Google Scholar 

  • 150.

    Falcke, H. & Rezzolla, L. Fast radio bursts: the last sign of supramassive neutron stars. Astron. Astrophys. 562, A137 (2014).

    Google Scholar 

  • 151.

    Ai, S., Gao, H. & Zhang, B. On the true fractions of repeating and non-repeating FRB sources. Preprint at https://arxiv.org/abs/2007.02400 (2020).

  • 152.

    Wang, M.-H. et al. Testing the hypothesis of a compact-binary-coalescence origin of fast radio bursts using a multimessenger approach. Astrophys. J. 891, L39 (2020).

    CAS  Google Scholar 

  • Leave a Reply

    Your email address will not be published. Required fields are marked *

    Top